Learning ML from "Machine Learning With Go" by Daniel Whitenack
- Go (go version go1.10 darwin/amd64)
- Source code from the book
- https://github.com/PacktPublishing/Machine-Learning-With-Go
- Note: The source code is in a local Go directory.
- Docker
- Tensorflow (runs on Docker)
- Minikube (Kubernetes)
- https://kubernetes.io/docs/getting-started-guides/minikube/
- https://github.com/kubernetes/minikube
- https://github.com/kubernetes/minikube/releases
- Hypervisor - do I need this?
- kubectl
- Mac
- brew install kubectl
- Linux
- ...
- Mac
- Minikube
- Mac
- curl -Lo minikube https://storage.googleapis.com/minikube/releases/v0.26.1/minikube-darwin-amd64 && chmod +x minikube && sudo mv minikube /usr/local/bin/
- brew cask install minikube
- Linux
- curl -Lo minikube https://storage.googleapis.com/minikube/releases/v0.26.1/minikube-linux-amd64 && chmod +x minikube && sudo mv minikube /usr/local/bin/
- Mac
- Pachyderm (runs on Minikube)
- http://pachyderm.readthedocs.io/en/latest/index.html
- pachctl
- Mac
- brew tap pachyderm/tap && brew install pachyderm/tap/pachctl@1.7
- For Debian based linux (64 bit) or Window 10+ on WSL:
- curl -o /tmp/pachctl.deb -L https://github.com/pachyderm/pachyderm/releases/download/v1.7.1/pachctl_1.7.1_amd64.deb && sudo dpkg -i /tmp/pachctl.deb
- Mac
- Jupyter (not part of the book)
- Tensorflow
- docker run -it tensorflow/tensorflow bash
- docker run -it -p 8888:8888 tensorflow/tensorflow
- To run in a Jupyter notebook
- Minikube
- minikube [delete|start|stop]
- Pachyderm
- minikube delete
- minikube start
- pachctl deploy local
- Check its status with "kubectl get all"
- Port forwarding "pachctl port-forward &"
- localhost:30080
- data versioning
- runs on K8S