Where are the paths of training set images and annotations to be specified?
mattroos opened this issue · 3 comments
In the example config file configs/focalnet/cascade_mask_rcnn_focalnet_tiny_patch4_mstrain_480-800_adamw_3x_coco_srf.py
we see:
data_root = 'data/coco/'
data = dict(
train=dict(pipeline=train_pipeline),
test=dict(
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/'
),
samples_per_gpu=1,
)
Why are ann_file
and img_prefix
defined in the test
dict but not in the train
dict? Where should the paths be specified for the training set?
It is specified in mmdet's default dataset config. The current configs inherit the default dataset config: https://github.com/open-mmlab/mmdetection/blob/master/configs/_base_/datasets/coco_instance.py
I see. So neither train nor test ann_file
and img_prefix
need to be specified in configs/focalnet/cascade_mask_rcnn_focalnet_tiny_patch4_mstrain_480-800_adamw_3x_coco_srf.py
if they are correctly specified in the mmdet's default config, to my understanding.
If someone wanted to alter the paths for the training set would it look something list this train=dict(pipeline=train_pipeline, ann_file=path/to/json.json, img_prefix=path/to/prefix/)
in configs/focalnet/cascade_mask_rcnn_focalnet_tiny_patch4_mstrain_480-800_adamw_3x_coco_srf.py
?