/smart

Codebase for ICLR 2023 paper, "SMART: Self-supervised Multi-task pretrAining with contRol Transformers"

Primary LanguagePythonOtherNOASSERTION

SMART: Self-supervised Multi-task pretrAining with contRol Transformers

This is the official codebase for the ICLR 2023 spotlight paper SMART: Self-supervised Multi-task pretrAining with contRol Transformers. If you use this code in an academic context, please use the following citation:

@inproceedings{
sun2023smart,
title={{SMART}: Self-supervised Multi-task pretrAining with contRol Transformers},
author={Yanchao Sun and Shuang Ma and Ratnesh Madaan and Rogerio Bonatti and Furong Huang and Ashish Kapoor},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=9piH3Hg8QEf}
}

Setting up

  • Using conda

    # dmc specific
    # create env
    conda env create --file docker/environment.yml
    
    # activate conda
    conda activate smart
    bash scripts/dmc_setup.sh
    
    # install this repo
    (smart) $ pip install -e .
    
  • Using docker

    # build image
    docker build \
          -f Dockerfile_base_azureml_dmc \
          --build-arg BASE_IMAGE=openmpi4.1.0-cuda11.3-cudnn8-ubuntu20.04:latest \
          -t smart:latest .
    
    # run image
    docker run -it -d --gpus=all --name=rl_pretrain_dmc_1 -v HOST_PATH:CONTAINER_PATH smart:latest
    
    # setup the repo (run inside the container)
    pip install -e .
    

Downloading data and pre-trained models download from Azure

  • Install azcopy

    wget https://aka.ms/downloadazcopy-v10-linux
    tar -xvf downloadazcopy-v10-linux
    sudo cp ./azcopy_linux_amd64_*/azcopy /usr/bin/
    rm -rf *azcopy*
    
  • Downloading the full dataset (1.18TiB)

    # download to data/ directory
    azcopy copy 'https://smartrelease.blob.core.windows.net/smartrelease/data/dmc_ae' 'data' --recursive
    
  • Downloading a subset of the full dataset

    # download to data/ directory
    azcopy copy 'https://smartrelease.blob.core.windows.net/smartrelease/data/dmc_ae/TYPE_DOMAIN_TASK' 'data' --recursive
    

    where

    • TYPE: randcollect, fullcollect Note: fullcollect datasets are ~10x larger than randcollect datasets)

    • DOMAIN_TASK: cartpole_balance, cartpole_swingup, cheetah_run, finger_spin, hopper_hop, hopper_stand, pendulum_swingup, walker_run, walker_stand, or walker_walk (See Table 2 in the paper)

    Example:

    # download to data/ directory (~ 9.7 GB each)
    azcopy copy 'https://smartrelease.blob.core.windows.net/smartrelease/data/dmc_ae/randcollect_walker_walk' 'data' --recursive
    azcopy copy 'https://smartrelease.blob.core.windows.net/smartrelease/data/dmc_ae/randcollect_cheetah_run' 'data' --recursive
    
  • Downloading the pretrained models

    # download to pretrained_models/ directory (236.34 MiB)
    azcopy copy 'https://smartrelease.blob.core.windows.net/smartrelease/pretrained_models' '.' --recursive
    

Running the code

Testing on small subset of full dataset

Let us run the code on the aforementioned small subset of randcollect_walker_walk and randcollect_cheetah_run.

python src/dmc_pretrain.py base=configs/pretrain.yaml \
        epochs=10 \
        data.num_steps=80000 \
        domain_and_task.source_data_type=rand \
        data.train_replay_id=1 \
        data.data_dir_prefix=data \
        model.model_type=naive \
        domain_and_task.source_envs="{'walker': ['walk'], 'cheetah': ['run']}" \
        output_dir=./outputs/pretrain_explore_subset

Pretraining on multiple domains and tasks

The set of pretraining tasks can be specified in the config file as shown below:

  • Pretrain with offline data collected by exploratory policies
python src/dmc_pretrain.py base=configs/pretrain.yaml \
        epochs=10 \
        data.num_steps=80000 \
        data.train_replay_id=5 \
        data.data_dir_prefix=data \
        model.model_type=naive \
        domain_and_task.source_data_type=full \
        domain_and_task.source_envs="{'walker': ['walk'], 'cheetah': ['run']}" \
        output_dir=./outputs/pretrain_explore
  • Pretrain with offline data collected by random policies
python src/dmc_pretrain.py base=configs/pretrain.yaml \
        epochs=10 \
        data.num_steps=80000 \
        data.train_replay_id=5 \
        data.data_dir_prefix=data \
        model.model_type=naive \
        domain_and_task.source_data_type=rand \
        domain_and_task.source_envs="{'walker': ['walk'], 'cheetah': ['run']}" \
        output_dir=./outputs/pretrain_random

Using pretrained model and finetunes the policy on a specific downstream task:

You can also download our pretrained models as reported in the paper, using the azcopy command in the previous section.

## set the downstream domain and task
DOMAIN=cheetah
TASK=run

## behavior cloning as the learning algorithm
python src/dmc_downstream.py base=configs/downstream.yaml \
        epochs=30 \
        data.num_steps=1000000 \
        domain_and_task.domain=${DOMAIN} \
        domain_and_task.task=${TASK} \
        model.model_type=naive \
        no_load_action=True \
        load_model_from=./outputs/pretrain_explore/checkpoints/last.ckpt \
        output_dir=./outputs/${DOMAIN}_${TASK}_bc/

## RTG-conditioned learning as the learning algorithm
python src/dmc_downstream.py \
        epochs=30 \
        data.num_steps=1000000 \
        domain_and_task.domain=${DOMAIN} \
        domain_and_task.task=${TASK} \
        model.model_type=reward_conditioned \
        data.rand_select=True \
        no_load_action=True \
        load_model_from=./outputs/pretrain_explore/checkpoints/last.ckpt \
        output_dir=./outputs/${DOMAIN}_${TASK}_bc/

Note that if --load_model_from is not specified, the model is trained from scratch.