/xtreme-distil-transformers

XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

Primary LanguagePythonMIT LicenseMIT

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks

Releasing [XtremeDistilTransformers] with Tensorflow 2.3 and HuggingFace Transformers with an unified API with the following features:

  • Distil any supported pre-trained language models as teachers (e.g, Bert, Electra, Roberta)
  • Initialize student model with any pre-trained model (e.g, MiniLM, DistilBert, TinyBert), or initialize from scratch
  • Multilingual text classification and sequence tagging
  • Distil multiple hidden states from teacher
  • Distil deep attention networks from teacher
  • Pairwise and instance-level classification tasks (e.g, MNLI, MRPC, SST)
  • Progressive knowledge transfer with gradual unfreezing
  • Fast mixed precision training for distillation (e.g, mixed_float16, mixed_bfloat16)
  • ONNX runtime inference

You can use the following task-agnostic pre-distilled checkpoints from XtremeDistilTransformers for (only) fine-tuning on labeled data from downstream tasks:

For further performance improvement, initialize XtremeDistilTransformers with any of the above pre-distilled checkpoints for task-specific distillation with additional unlabeled data from the downstream task for the best performance.

The following table shows the performance of the above checkpoints on GLUE dev set and SQuAD-v2.

Models #Params Speedup MNLI QNLI QQP RTE SST MRPC SQUAD2 Avg
BERT 109 1x 84.5 91.7 91.3 68.6 93.2 87.3 76.8 84.8
DistilBERT 66 2x 82.2 89.2 88.5 59.9 91.3 87.5 70.7 81.3
TinyBERT 66 2x 83.5 90.5 90.6 72.2 91.6 88.4 73.1 84.3
MiniLM 66 2x 84.0 91.0 91.0 71.5 92.0 88.4 76.4 84.9
MiniLM 22 5.3x 82.8 90.3 90.6 68.9 91.3 86.6 72.9 83.3
XtremeDistil-l6-h256 13 8.7x 83.9 89.5 90.6 80.1 91.2 90.0 74.1 85.6
XtremeDistil-l6-h384 22 5.3x 85.4 90.3 91.0 80.9 92.3 90.0 76.6 86.6
XtremeDistil-l12-h384 33 2.7x 87.2 91.9 91.3 85.6 93.1 90.4 80.2 88.5

Install requirements pip install -r requirements.txt

Tested with tensorflow 2.3.1, transformers 4.1.1, torch 1.6.0, python 3.6.9 and CUDA 10.2

Sample usages for distilling different pre-trained language models

Training

Sequence Labeling for Wiki NER

PYTHONHASHSEED=42 python run_xtreme_distil.py 
--task $$PT_DATA_DIR/datasets/NER 
--model_dir $$PT_OUTPUT_DIR 
--seq_len 32  
--transfer_file $$PT_DATA_DIR/datasets/NER/unlabeled.txt 
--do_NER 
--pt_teacher TFBertModel 
--pt_teacher_checkpoint bert-base-multilingual-cased 
--student_distil_batch_size 256 
--student_ft_batch_size 32
--teacher_batch_size 128  
--pt_student_checkpoint microsoft/xtremedistil-l6-h384-uncased 
--distil_chunk_size 10000 
--teacher_model_dir $$PT_OUTPUT_DIR 
--distil_multi_hidden_states 
--distil_attention 
--compress_word_embedding 
--freeze_word_embedding
--opt_policy mixed_float16

Text Classification for MNLI

PYTHONHASHSEED=42 python run_xtreme_distil.py 
--task $$PT_DATA_DIR/glue_data/MNLI 
--model_dir $$PT_OUTPUT_DIR 
--seq_len 128  
--transfer_file $$PT_DATA_DIR/glue_data/MNLI/train.tsv 
--do_pairwise 
--pt_teacher TFElectraModel 
--pt_teacher_checkpoint google/electra-base-discriminator 
--student_distil_batch_size 128  
--student_ft_batch_size 32
--pt_student_checkpoint microsoft/xtremedistil-l6-h384-uncased 
--teacher_model_dir $$PT_OUTPUT_DIR 
--teacher_batch_size 32
--distil_chunk_size 300000
--opt_policy mixed_float16

Alternatively, use TinyBert pre-trained student model checkpoint as --pt_student_checkpoint nreimers/TinyBERT_L-4_H-312_v2

Arguments


- task folder contains
	-- train/dev/test '.tsv' files with text and classification labels / token-wise tags (space-separated)
	--- Example 1: feel good about themselves <tab> 1
	--- Example 2: '' Atelocentra '' Meyrick , 1884 <tab> O B-LOC O O O O
	-- label files containing class labels for sequence labeling
	-- transfer file containing unlabeled data
	
- model_dir to store/restore model checkpoints

- task arguments
-- do_pairwise for pairwise classification tasks like MNLI and MRPC
-- do_NER for sequence labeling

- teacher arguments
-- pt_teacher for teacher model to distil (e.g., TFBertModel, TFRobertaModel, TFElectraModel)
-- pt_teacher_checkpoint for pre-trained teacher model checkpoints (e.g., bert-base-multilingual-cased, roberta-large, google/electra-base-discriminator)

- student arguments
-- pt_student_checkpoint to initialize from pre-trained small student models (e.g., MiniLM, DistilBert, TinyBert)
-- instead of pre-trained checkpoint, initialize a raw student from scratch with
--- hidden_size
--- num_hidden_layers
--- num_attention_heads

- distillation features
-- distil_multi_hidden_states to distil multiple hidden states from the teacher
-- distil_attention to distil deep attention network of the teacher
-- compress_word_embedding to initialize student word embedding with SVD-compressed teacher word embedding (useful for multilingual distillation)
-- freeze_word_embedding to keep student word embeddings frozen during distillation (useful for multilingual distillation)
-- opt_policy (e.g., mixed_float16 for GPU and mixed_bfloat16 for TPU)
-- distil_chunk_size for using transfer data in chunks during distillation (reduce for OOM issues, checkpoints are saved after every distil_chunk_size steps)

Model Outputs

The above training code generates intermediate model checkpoints to continue the training in case of abrupt termination instead of starting from scratch -- all saved in $$PT_OUTPUT_DIR. The final output of the model consists of (i) xtremedistil.h5 with distilled model weights, (ii) xtremedistil-config.json with the training configuration, and (iii) word_embedding.npy for the input word embeddings from the student model.

Prediction

PYTHONHASHSEED=42 python run_xtreme_distil_predict.py 
--do_eval 
--model_dir $$PT_OUTPUT_DIR 
--do_predict 
--pred_file ../../datasets/NER/unlabeled.txt
--opt_policy mixed_float16

*ONNX Runtime Inference

You can also use ONXX Runtime for inference speedup with the following script:

PYTHONHASHSEED=42 python run_xtreme_distil_predict_onnx.py 
--do_eval 
--model_dir $$PT_OUTPUT_DIR 
--do_predict 
--pred_file ../../datasets/NER/unlabeled.txt

For details on ONNX Runtime Inference, environment and arguments refer to this Notebook The script is for online inference with batch_size=1.

*Continued Fine-tuning

You can continue fine-tuning the distilled/compressed student model on more labeled data with the following script:

PYTHONHASHSEED=42 python run_xtreme_distil_ft.py --model_dir $$PT_OUTPUT_DIR 

If you use this code, please cite:

@misc{mukherjee2021xtremedistiltransformers,
      title={XtremeDistilTransformers: Task Transfer for Task-agnostic Distillation}, 
      author={Subhabrata Mukherjee and Ahmed Hassan Awadallah and Jianfeng Gao},
      year={2021},
      eprint={2106.04563},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@inproceedings{mukherjee-hassan-awadallah-2020-xtremedistil,
    title = "{X}treme{D}istil: Multi-stage Distillation for Massive Multilingual Models",
    author = "Mukherjee, Subhabrata  and
      Hassan Awadallah, Ahmed",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-main.202",
    pages = "2221--2234",
}

Code is released under MIT license.