/zero-shot-scfoundation

Primary LanguageJupyter NotebookMIT LicenseMIT

Foundation models in single-cell biology: evaluating zero-shot capabilities

DOI DOI

This repository contains the code that accompanies our paper, Assessing the limits of zero-shot foundation models in single-cell biology. You can find the preprint of the paper here.

Project overview

In this project, we assess two proposed foundation models in the context of single-cell RNA-seq: Geneformer (pub, code) and scGPT (pub, code). We focus on evaluating the zero-shot capabilities of these models, specifically their ability to generalize beyond their original training objectives. Our evaluation targets two main tasks: cell type clustering and batch integration. In these tasks, we compare the performance of Geneformer and scGPT against two baselines: scVI (pub, code) and a heuristic method that selects highly variable genes (HVGs). We also investigate the performence of the models in reconstructing the gene expression profiles of cells, and compare it against the baselines - such as a mean expression value or average ranking.

Dependencies

Currently the code requires the GPUs supported by flash attention, required for scGPT to run.

GPUs supported by flash attention are:

  • Ampere, Ada, or Hopper GPUs (e.g., A100, RTX 3090, RTX 4090, H100).
  • Turing GPUs (T4, RTX 2080)
Packages version

This code has been tested with the following versions of the packages:

Installation

Below you can find the instructions on how to install the dependencies for this project. We provide two options: using conda/mamba or using Docker.

Conda / Mamba

Conda / Mamba

You can install the dependencies using conda. To do so, you need to have conda installed on your machine. If you don't have it, you can install it from here.

We recommend using mamba, since it is faster in our experience. You can install mamba following the guide here.

To simplify installation, we provide the installation script that creates a new conda environment with all the dependencies installed. You can run the following command to create the environment:

bash envs/installation.sh

If the installation is successful, you will see the following message:

2024-08-22 19:49:26 SUCCESS: All packages installed successfully.

And you can activate the environment by running:

conda activate sc_foundation_evals
Docker

Docker

The docker image is available on DockerHub here. You can pull the image by running:

docker pull kzkedzierska/sc_foundation_evals

The image is based on the cnstark/pytorch:1.13.0-py3.9.12-cuda11.7.1-ubuntu20.04 image, and has all the dependencies installed. The Dockerfile used to build the image can be found in the envs/docker directory.

You can also skip pulling the image since docker will pull it if needed. To run the interactive session with the image, you can use the following command:

docker run --gpus all -it kzkedzierska/sc_foundation_evals

If you want to be able to run the notebooks, run the image with the following tag:

 docker run --gpus all -it --rm -p 8888:8888 -v  ./:/workspace kzkedzierska/sc_foundation_evals:latest_notebook

And open the link provided in the terminal in your browser. It should look like this:

[I 2024-08-23 22:15:13.015 ServerApp] Serving notebooks from local directory: /workspace
[I 2024-08-23 22:15:13.015 ServerApp] Jupyter Server 2.14.2 is running at:
[I 2024-08-23 22:15:13.015 ServerApp] http://localhost:8888/tree
[I 2024-08-23 22:15:13.015 ServerApp] http://127.0.0.1:8888/tree

For running the command on the server, consult the documentation of the server provider on how to forward the ports properly.

Running the code

Downloading the weights

To run notebooks you also need to have the weights of the models downloaded. scGPT weights are avaialble here and Geneformer weights are available in its repository. As per the instructions in the Geneformer repository, make sure you have git lfs installed before downloading the weights via repository cloning.

Copying this repository

To run the code, you need to clone this repository.

git clone https://github.com/microsoft/zero-shot-scfoundation

And download and unpack the data, stored at figshare (see here for more details).

cd zero-shot-scfoundation
# download and unpack the data
wget https://figshare.com/ndownloader/files/43480497 -O data.zip
unzip data.zip && rm data.zip

Notebooks

To best understand the code and it's organization, please have a look at the notebooks. The notebooks directory currently contains the following notebooks:

Any questions?

If you have any questions, or find any issues with the code, please open an issue in this repository. You can find more information on how to file an issue in here. We also welcome any contributions to the code - be sure to checkout the Contributing section below.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.