Protest Activity Detection and Perceived Violence Estimation from Social Media Images
Implementation of the model used in the paper Protest Activity Detection and Perceived Violence Estimation from Social Media Images (ACM Multimedia 2017) [arxiv] by Donghyeon Won , Zachary C. Steinert-Threlkeld , Jungseock Joo .
Pytorch
NumPy
pandas
scikit-learn
python train.py --data_dir UCLA-protest/ --batch_size 32 --lr 0.002 --print_freq 100 --epochs 100 --cuda
python pred.py --img_dir path/to/some/image/directory/ --output_csvpath result.csv --model model_best.pth.tar --cuda
UCLA Protest Image Dataset
You will need to download our UCLA Protest Image Dataset to train the model. Please e-mail me if you want to download our dataset!
# of images: 40,764
# of protest images: 11,659
Protest & Visual Attributes
Fields
Protest
Sign
Photo
Fire
Police
Children
Group>20
Group>100
Flag
Night
Shouting
# of Images
11,659
9,669
428
667
792
347
8,510
2,939
970
987
548
Positive Rate
0.286
0.829
0.037
0.057
0.068
0.030
0.730
0.252
0.083
0.085
0.047
Mean
Median
STD
0.365
0.352
0.144
We fine-tuned ImageNet pretrained ResNet50 to our data. You can download the model I trained from this Dropbox link .