/alumina

A deep learning library for rust

Primary LanguageRust

Alumina

An experimental deep learning library written in pure rust. Breakage expected on each release in the short term. See mnist.rs in examples or Rusty_SR for usage samples.

Overview

The key types are Node and Ops which are Rc-like references to components of a shared mutable Graph, which is extended gradually with new tensors and operations via construction functions. Facilities for reverse-mode automatic differentiation are included in operations, extending the graph as necessary. Typical graph construction and differentiation shown below:

// 1. Build a MLP neural net graph - 98% @ 10 epochs
let input = Node::new(&[-1, 28, 28, 1]).set_name("input");
let labels = Node::new(&[-1, 10]).set_name("labels");

let layer1 = elu(affine(&input, 256, msra(1.0))).set_name("layer1");
let layer2 = elu(affine(&layer1, 256, msra(1.0))).set_name("layer2");
let logits = linear(&layer2, 10, msra(1.0)).set_name("logits");

let training_loss = add(
  reduce_sum(softmax_cross_entropy(&logits, &labels, -1), &[], false).set_name("loss"),
  scale(l2(logits.graph().nodes_tagged(NodeTag::Parameter)), 1e-3).set_name("regularisation"),
)
.set_name("training_loss");
let accuracy = equal(argmax(&logits, -1), argmax(&labels, -1)).set_name("accuracy");

let parameters = accuracy.graph().nodes_tagged(NodeTag::Parameter);

let grads = Grad::of(training_loss).wrt(parameters).build()?;

Current work is focused on improving the high level graph construction API, and better supporting dynamic/define-by-run graphs.

Contributions

Issues are a great place for discussion, problems, requests.

Documentation

Patchy until the library API experimentation ends, particularly until the graph construction API finalised.

Progress

  • Computation hypergraph
  • NN
    • Dense Connection and Bias operations
    • N-dimensional Convolution
      • Arbitrary padding
      • Strides
      • Reflection padding
    • Categorical Cross Entropy
    • Binary Cross Entropy
  • Boolean
    • Equal
    • Greater_Equal
    • Greater_Than
    • Less_Equal
    • Less_Than
    • Not
  • Elementwise
    • Abs
    • Ceil
    • Cos
    • Div
    • Elu
    • Exp
    • Floor
    • Identity
    • Leaky_relu
    • Ln
    • Logistic
    • Max
    • Min
    • Mul
    • Negative
    • Offset
    • Reciprocal
    • Relu
    • Robust
    • Round
    • Scale
    • Sign
    • Sin
    • SoftPlus
    • SoftSign
    • Sqr
    • Sqrt
    • Srgb
    • Subtract
    • Tanh
  • Grad
    • Stop_grad
  • Manip
    • Concat
    • Slice
    • Permute_axes
    • Expand_dims
    • Remove_dims
  • Math
    • Argmax
    • Broadcast
  • Pooling
    • N-dimensional Avg_Pool
    • Max pool
    • N-dimensional spaxel shuffling for "Sub-pixel Convolution"
    • N-dimensional Linear-Interpolation
    • Global Pooling
  • Reduce
    • Reduce_Prod
    • Reduce_Sum
  • Regularisation
    • L1
    • L2
    • Hoyer_squared
    • Robust
  • Shapes
    • Shape inference and constraint propagation
  • Data Loading
    • Mnist
    • Cifar
    • Image Folders
    • Imagenet (ILSVRC)
  • SGD
  • RMSProp
  • ADAM
  • Basic numerical tests
  • Limit Optimiser evaluation batch size to stay within memory limits
  • Selectively disable calculation of forward values, node derivatives and parameter derivatives
  • Builder patterns for operation contruction
  • Split Graph struct into mutable GraphBuilder and immutable Sub-Graphs
    • Replace 'accidentally quadratic' graph algorithms
    • Replace up-front allocation with Sub-Graph optimised allocation/deallocation patterns based on liveness analysis of nodes
  • Overhaul data ingestion, particularly buffering input processing/reads.
  • Move tensor format to bluss' ndarray
  • Improve naming inter/intra-library consistancy
  • Operator overloading for simple ops
  • Complete documentation
  • Reduce ability to express illegal states in API
  • Move from panics to error-chain
  • Move from error-chain to thiserror
  • Guard unsafe code rigourously
  • Comprehensive tests

Distant

  • Optionally typed tensors
  • Arrayfire as an option for sgemm on APUs
  • Graph optimisation passes and inplace operations
  • Support for both dynamic and static graphs
    • RNNs

License

MIT