Machine Learning for Audio Signals in Python
Prof. Dr. -Ing. Gerald Schuller
Jupyter Notebooks and Videos: Renato Profeta
Applied Media Systems Group
Technische Universität Ilmenau
01 Neural Networks Basics - Detector:
- Neural Networks as Detectors
- Python PyTorch Examples
02 Neural Network as Function Approximator, Regression:
- PyTorch Example: Shallow Network
- Deep Function Approximator
- PyTorch Example: Deep Network
03 Neural Networks for Classification:
04 Neural Network Detector for MNIST Digit Recognition:
05 Convolutional Neural Networks:
06 Convolutional Autoencoder:
- PyTorch Audio Convolutional Autoencoder
- Effects of Signal Shifts
07 Denoising Autoencoder:
- Experiment 1 with stride=512
- Experiment 2 with stride=32
08 Variational Autoencoder (VAE):
- Posterior and Prior Distribution
- Kullback–Leibler Divergence
- Variational Autoencoder Experiments
09 Recurrent Neural Network (RNN):
- Infinite Impulse Response (IIR) Filter Structure
- IIR Python Implementation
- IIR Implementation using RNN in PyTorch
Please check the following files at the 'binder' folder:
- environment.yml
- postBuild
Examples requiring a microphone will not work on remote environments such as Binder and Google Colab.