/UniDepth

Universal Monocular Metric Depth Estimation

Primary LanguagePythonOtherNOASSERTION

arXiv HuggingFace

KITTI Benchmark PWC PWC

UniDepth: Universal Monocular Metric Depth Estimation

UniDepth: Universal Monocular Metric Depth Estimation,
Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, Fisher Yu,
CVPR 2024 (to appear),
Paper at arXiv 2403.18913

News and ToDo

  • Release UniDepth on PyPI.
  • Release smaller models.
  • Release HuggingFace/Gradio demo.
  • Release UniDepthV2.
  • 02.04.2024: Release UniDepth as python package.
  • 01.04.2024: Inference code and V1 models are released.
  • 26.02.2024: UniDepth is accepted at CVPR 2024!

Zero-Shot Visualization

YouTube (The Office - Parkour)

animated

NuScenes (stitched cameras)

animated

Installation

Requirements are not in principle hard requirements, but there might be some differences (not tested):

  • Linux
  • Python 3.10+
  • CUDA 11.8

Install the environment needed to run UniDepth with:

export VENV_DIR=<YOUR-VENVS-DIR>
export NAME=Unidepth

python -m venv $VENV_DIR/$NAME
source $VENV_DIR/$NAME/bin/activate

# Install UniDepth and dependencies
pip install -e . --extra-index-url https://download.pytorch.org/whl/cu118

# Install Pillow-SIMD (Optional)
pip uninstall pillow
CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

If you use conda, you should change the following:

python -m venv $VENV_DIR/$NAME -> conda create -n $NAME python=3.11
source $VENV_DIR/$NAME/bin/activate -> conda activate $NAME

Note: Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the PyTorch website.

Note: xFormers may raise the the Runtime "error": Triton Error [CUDA]: device kernel image is invalid.
This is related to xFormers mismatching system-wide CUDA and CUDA shipped with torch.
It may considerably slow down inference.

Run UniDepth on the given assets to test your installation (you can check this script as guideline for further usage):

python ./scripts/demo.py

If everything runs correctly, demo.py should print: ARel: 5.13%.

If you encounter Segmentation Fault after running the demo, you may need to uninstall torch via pip (pip uninstall torch) and install the torch version present in requirements with conda.

Get Started

After installing the dependencies, you can load the pre-trained models easily through TorchHub. For instance, if you want UniDepth v1 with Dino backbone:

import torch

version="v1"
backbone="ViTL14"
model = torch.hub.load("lpiccinelli-eth/UniDepth", "UniDepth", version=version, backbone=backbone, pretrained=True, trust_repo=True, force_reload=True)

or via HuggingFace API:

from unidepth.models import UniDepthV1HF

model = UniDepthV1HF.from_pretrained(backbone="ViTL14")

Then you can generate the metric depth estimation and intrinsics prediction directly from RGB image only as follows:

import numpy as np
from PIL import Image

# Move to CUDA, if any
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# Load the RGB image and the normalization will be taken care of by the model
rgb = torch.from_numpy(np.array(Image.open(image_path))).permute(2, 0, 1) # C, H, W

predictions = model.infer(rgb)

# Metric Depth Estimation
depth = predictions["depth"]

# Point Cloud in Camera Coordinate
xyz = predictions["points"]

# Intrinsics Prediction
intrinsics = predictions["intrinsics"]

You can use ground truth intrinsics as input to the model as well:

intrinsics_path = "assets/demo/intrinsics.npy"

# Load the intrinsics if available
intrinsics = torch.from_numpy(np.load(intrinsics_path)) # 3 x 3

predictions = model.infer(rgb, intrinsics)

To use the forward method for your custom training, you should:

  1. Take care of the dataloading:
    a) ImageNet-normalization
    b) Long-edge based resizing (and padding) with input shape provided in image_shape under configs
    c) BxCxHxW format
    d) If any intriniscs given, adapt them accordingly to your resizing
  2. Format the input data structure as:
data = {"image": rgb, "K": intrinsics}
predictions = model(data, {})

For easy-to-use, we provide our models via TorchHub where you need to specify version and backbone as:

torch.hub.load("lpiccinelli-eth/UniDepth", "UniDepth", version=version, backbone=backbone, pretrained=True, trust_repo=True, force_reload=True)

For improved flexibility, we provide a UniDepth as HuggingFace model where you need to import the version wanted and specify the backbone:

from unidepth.models import UniDepthV1HF

model = UniDepthV1HF.from_pretrained(backbone=backbone)

Mappings:

  • Version 1: version="v1"
  • Version 2: version="v2"
  • ViT Large: backbone="ViTL14"
  • ConvNext Large: backbone="ConvNextL"

For HuggingFace API you will need to import different UniDepth model for different versions.

Please visit HuggingFace to access the repo models with weights.

Results

Metric Depth Estimation

The performance reported is for UniDepthV1 model and the metrics is d1 (higher is better) on zero-shot evaluation. The common split between SUN-RGBD and NYUv2 is removed from SUN-RGBD validation set for evaluation. *: non zero-shot on NYUv2 and KITTI.

Model NYUv2 SUN-RGBD ETH3D Diode (In) IBims-1 KITTI Nuscenes DDAD
BTS* 88.5 76.1 26.8 19.2 53.1 96.2 33.7 43.0
AdaBins* 90.1 77.7 24.3 17.4 55.0 96.3 33.3 37.7
NeWCRF* 92.1 75.3 35.7 20.1 53.6 97.5 44.2 45.6
iDisc* 93.8 83.7 35.6 23.8 48.9 97.5 39.4 28.4
ZoeDepth* 95.2 86.7 35.0 36.9 58.0 96.5 28.3 27.2
Metric3D 92.6 15.4 45.6 39.2 79.7 97.5 72.3 -
UniDepth_ConvNext 97.2 94.8 49.8 60.2 79.7 97.2 83.3 83.2
UniDepth_ViT 98.4 96.6 32.6 77.1 23.9 98.6 86.2 86.4

Contributions

If you find any bug in the code, please report to Luigi Piccinelli (lpiccinelli@ethz.ch)

Citation

If you find our work useful in your research please consider citing our publication:

@inproceedings{piccinelli2024unidepth,
    title={UniDepth: Universal Monocular Metric Depth Estimation},
    author = {Piccinelli, Luigi and Yang, Yung-Hsu and Sakaridis, Christos and Segu, Mattia and Li, Siyuan and Van Gool, Luc and Yu, Fisher},
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2024}
}

License

This software is released under Creatives Common BY-NC 4.0 license. You can view a license summary here.

Acknowledgement

This work is funded by Toyota Motor Europe via the research project TRACE-Zurich (Toyota Research on Automated Cars Europe).