/HipoRank

(EACL 2021) Discourse-Aware Unsupervised Summarization of Long Scientific Documents

Primary LanguageJupyter NotebookMIT LicenseMIT

HipoRank

Unsupervised and extractive long document summarization with Hierarchichal and Positional information. Contains code for Discourse-Aware Unsupervised Summarization of Long Scientific Documents accepted at EACL 2021.

Requirements

Libraries

pip install -r requirements.txt

Datasets

Original: https://github.com/armancohan/long-summarization
Val/Test sets used: https://zenodo.org/record/5718829

ROUGE

pyrouge_set_rouge_path /absolute/path/to/ROUGE-1.5.5/directory

Model Files

Directory Structure

hipo_rank

Library to define summarization pipeline as modular components with standard interfaces for ease of experimentation;

  • hipo_rank/dataset_iterators yield document sections and sentences in standard typed format;
  • hipo_rank/embedders generate vector representations for sentences and sections;
  • hipo_rank/similarities compute similarities to weigh edges in document graph;
  • hipo_rank/directions introduce directionality in document graph based on discourse structure;
  • hipo_rank/scorers compute node centrality for sentences in document graph;
  • hipo_rank/summarizers generate a summary from a document graph with node centrality scores;
  • hipo_rank/evaluators evaluate summary with different metrics;

Experiments

  • exp1_run.py hyperparameter tuning and ablation study on PubMed val set;
  • exp2_run.py cnndm validation set;
  • exp3_run.py pubmed test set;
  • exp4_run.py arxiv test set with pubmed hyperparams;
  • exp5_run.py lead baseline;
  • exp6_run.py effect of document length;
  • exp7_run.py hyperparameter tuning on arxiv val set;
  • exp8_run.py pacsum baseline;
  • exp9_run.py similarity thresholding;
  • exp10_run.py short sentence removal;
  • exp11_run.py TextRank baseline;

Human evaluation

  • human_eval_sample.ipynb Code to sample examples for human evaluation;
  • human_eval_samples.jsonl Sampled examples for human evaluation;
  • human_eval_data.jsonl Results of human evaluation from Prodigy.ai annotation tool;
  • human_eval_results.ipynb Code to generate human evaluation metrics;

Plotting

  • plot_ablation.ipynb Code to plot results of ablation study;
  • plot_sentence_positions.ipynb Code to plot sentence positions in original document;