Pytorch implementation of the paper "The Devil Is in the Details: Window-based Attention for Image Compression". CVPR2022.
This repository is based on CompressAI. We kept scripts for training and evaluation, and removed other components. The major changes are provided in compressai/models
. For the official code release, see the CompressAI.
This repo defines the CNN-based models and Transformer-based models for learned image compression in "The Devil Is in the Details: Window-based Attention for Image Compression".
The architecture of CNN-based model.
The architecture of Transformer-based model (STF).
Install CompressAI and the packages required for development.
conda create -n compress python=3.7
conda activate compress
pip install compressai
pip install pybind11
git clone https://github.com/Googolxx/STF stf
cd stf
pip install -e .
pip install -e '.[dev]'
Note: wheels are available for Linux and MacOS.
An examplary training script with a rate-distortion loss is provided in
train.py
.
Training a CNN-based model:
CUDA_VISIBLE_DEVICES=0,1 python train.py -d /path/to/image/dataset/ -e 1000 --batch-size 16 --save --save_path /path/to/save/ -m cnn --cuda --lambda 0.0035
e.g., CUDA_VISIBLE_DEVICES=0,1 python train.py -d openimages -e 1000 --batch-size 16 --save --save_path ckpt/cnn_0035.pth.tar -m cnn --cuda --lambda 0.0035
Training a Transformer-based model(STF):
CUDA_VISIBLE_DEVICES=0,1 python train.py -d /path/to/image/dataset/ -e 1000 --batch-size 16 --save --save_path /path/to/save/ -m stf --cuda --lambda 0.0035
To evaluate a trained model on your own dataset, the evaluation script is:
CUDA_VISIBLE_DEVICES=0 python -m compressai.utils.eval_model -d /path/to/image/folder/ -r /path/to/reconstruction/folder/ -a stf -p /path/to/checkpoint/ --cuda
CUDA_VISIBLE_DEVICES=0 python -m compressai.utils.eval_model -d /path/to/image/folder/ -r /path/to/reconstruction/folder/ -a cnn -p /path/to/checkpoint/ --cuda
The script for downloading OpenImages is provided in downloader_openimages.py
. Please install fiftyone first.
Visualization of the reconstructed image kodim01.png.
Visualization of the reconstructed image kodim07.png.
RD curves on Kodak.
RD curves on CLIC Professional Validation dataset.
Codec Efficiency on Kodak
Method | Enc(s) | Dec(s) | PSNR | bpp |
---|---|---|---|---|
CNN | 0.12 | 0.12 | 35.91 | 0.650 |
STF | 0.15 | 0.15 | 35.82 | 0.651 |
Pretrained models (optimized for MSE) trained from scratch using randomly chose 300k images from the OpenImages dataset.
Method | Lambda | Link |
---|---|---|
CNN | 0.0035 | cnn_0035 |
CNN | 0.025 | cnn_025 |
STF | 0.0035 | stf_0035 |
STF | 0.025 | stf_025 |
Other pretrained models will be released successively.
@inproceedings{zou2022the,
title={The Devil Is in the Details: Window-based Attention for Image Compression},
author={Zou, Renjie and Song, Chunfeng and Zhang, Zhaoxiang},
booktitle={CVPR},
year={2022}
}
- CompressAI: https://github.com/InterDigitalInc/CompressAI
- Swin-Transformer: https://github.com/microsoft/Swin-Transformer
- Tensorflow compression library by Ballé et al.: https://github.com/tensorflow/compression
- Range Asymmetric Numeral System code from Fabian 'ryg' Giesen: https://github.com/rygorous/ryg_rans
- Kodak Images Dataset: http://r0k.us/graphics/kodak/
- Open Images Dataset: https://github.com/openimages
- fiftyone: https://github.com/voxel51/fiftyone
- CLIC: https://www.compression.cc/