-
Motivate rapids [ show coverage of modern data science tools ]
-
Generate a synthetic dataset
- 2.1 - Split into train and test set
- 2.2 - Visualize sub-datasets
- ETL
- 3.1 - Load data [ csv read ]
- 3.2 - Transform data [ standard scaler ]
- Model Building
- 4.1 - Train CPU and GPU XGBoost classifier models
- 4.2 - Use trained models for inference
- 4.3 - Compare accuracy
- 4.4 - Visualize sample boosted trees & model predictions
- Extensions
- 5.1 - Create an ensemble with a clustering model [ DBScan ]
- 5.2 - Export data to DeepLearning Framework [ PyTorch ]
git clone https://github.com/miroenev/rapids && cd rapids
sudo docker build -t rapids-demo:latest .
sudo docker run --runtime=nvidia -it --rm -p 8888:8888 -p 8787:8787 rapids-demo:latest
i) navigate browser to IP of machine running container at port 8888
e.g., http://127.0.0.1:8888
ii) in the rapids folder launch the notebook titled
rapids_ml_workflow_demo.ipynb