The ultimate python package to work with stock and crypto data
pip install goldhand
from goldhand import *
# tradingView data
tw = Tw()
# data frame of the stocks
tw.stock
# data frame of the top 300 crypto currency
tw.crypto
# data frame of the top 3000 etf
tw.etf
# Get a plot of the stock to see the location in the sector
tw.get_sec_plot('AMD').show()
# Get a plot of the stock to see the location in the industry
tw.get_sec_plot('AMD').show()
The GoldHand
class is a part of the goldhand
Python package, which provides functionality for working with stock and crypto data. This class allows users to retrieve detailed information and charts for a specific stock.
# Get a detailed chart of a stock AMD
ticker = "AMD"
t = GoldHand(ticker)
t.df.tail().T
# Get a detailed chart of a stock AMD
ticker = "TSLA"
t = GoldHand(ticker)
t.plotly_last_year(tw.get_plotly_title(ticker)).show()
## Stock Chart
# Get a detailed chart of a crypto
ticker = "BTC-USD"
t = GoldHand(ticker)
t.plotly_last_year(tw.get_plotly_title(ticker)).show()
ticker = "TSLA"
t = GoldHand(ticker)
t.plot_goldhand_line(tw.get_plotly_title(ticker)).show()
The Backtest class is a powerful tool for evaluating the performance of trading strategies using historical data. It allows you to simulate trades and calculate various performance metrics to assess the profitability and risk of your strategy.
It takes a data and a function and display the trades.
ticker= 'TSLA'
data = GoldHand(ticker).df
backtest = Backtest( data, rsi_strategy, plot_title=tw.get_plotly_title(ticker), buy_threshold=30, sell_threshold=70)
backtest.summarize_strategy()
summarize_strategy
will show the trades summary, a plot with trades and the trades in DataFrame.
"""
RSI strategy for backtesting with Backtest class
Parameters:
- data: pandas DataFrame with columns: date, open, high, low, close, volume and rsi
- buy_threshold: int, default 30, buy when RSI is below this value
- sell_threshold: int, default 70, sell when RSI is above this value
"""
backtest = Backtest( data, rsi_strategy, plot_title=tw.get_plotly_title(ticker), buy_threshold=30, sell_threshold=70)
ticker = 'TSLA'
p = show_indicator_rsi_strategy(ticker = ticker, buy_threshold=30, sell_threshold=70, plot_title=tw.get_plotly_title(ticker), add_strategy_summary=True)
"""
This function implements the GoldHandLine strategy.
Parameters:
- data (pandas DataFrame) : The DataFrame containing the data.
- buy_at (str): The color of the line to buy at. Default is 'gold'.
- sell_at (str): The color of the line to sell at. Default is 'grey'.
"""
backtest = Backtest( data, goldhand_line_strategy,)
ticker = 'BTC-USD'
show_indicator_goldhand_line_strategy(ticker = ticker, plot_title=tw.get_plotly_title(ticker), buy_at='gold', sell_at='blue', add_strategy_summary=True)