Breast cancer has the second highest mortality rate in women next to lung cancer. As per clinical statistics, 1 in every 8 women is diagnosed with breast cancer in their lifetime. However, periodic clinical check-ups and self-tests help in early detection and thereby significantly increase the chances of survival. Invasive detection techniques cause rupture of the tumor, accelerating the spread of cancer to adjoining areas. Hence, there arises the need for a more robust, fast, accurate, and efficient non-invasive cancer detection system. Early detection can give patients more treatment options. In order to detect signs of cancer, breast tissue from biopsies is stained to enhance the nuclei and cytoplasm for microscopic examination. Then, pathologists evaluate the extent of any abnormal structural variation to determine whether there are tumors. Architectural Distortion (AD) is a very subtle contraction of the breast tissue and may represent the earliest sign of cancer. Since it is very likely to be unnoticed by radiologists, several approaches have been proposed over the years but none using deep learning techniques. AI will become a transformational force in healthcare and soon, computer vision models will be able to get a higher accuracy when researchers have the access to more medical imaging datasets. The application of machine learning models for prediction and prognosis of disease development has become an irrevocable part of cancer studies aimed at improving the subsequent therapy and management of patients. The application of machine learning models for accurate prediction of survival time in breast cancer on the basis of clinical data is the main objective. We have developed a computer vision model to detect breast cancer in histopathological images. Two classes will be used in this project: Benign and Malignant
mistersharmaa/BreastCancerPrediction
Breast cancer has the second highest mortality rate in women next to lung cancer. As per clinical statistics, 1 in every 8 women is diagnosed with breast cancer in their lifetime. However, periodic clinical check-ups and self-tests help in early detection and thereby significantly increase the chances of survival. Invasive detection techniques cause rupture of the tumor, accelerating the spread of cancer to adjoining areas. Hence, there arises the need for a more robust, fast, accurate, and efficient non-invasive cancer detection system. Early detection can give patients more treatment options. In order to detect signs of cancer, breast tissue from biopsies is stained to enhance the nuclei and cytoplasm for microscopic examination. Then, pathologists evaluate the extent of any abnormal structural variation to determine whether there are tumors. Architectural Distortion (AD) is a very subtle contraction of the breast tissue and may represent the earliest sign of cancer. Since it is very likely to be unnoticed by radiologists, several approaches have been proposed over the years but none using deep learning techniques. AI will become a transformational force in healthcare and soon, computer vision models will be able to get a higher accuracy when researchers have the access to more medical imaging datasets. The application of machine learning models for prediction and prognosis of disease development has become an irrevocable part of cancer studies aimed at improving the subsequent therapy and management of patients. The application of machine learning models for accurate prediction of survival time in breast cancer on the basis of clinical data is the main objective. We have developed a computer vision model to detect breast cancer in histopathological images. Two classes will be used in this project: Benign and Malignant
Jupyter Notebook