- SRCNN with Vanilla RNN tensorflow implementation
- Hanyang University ITE4053 Deep Learning Methods and Applications assignment #2
- Python 3.6
- TensorFlow 1.12
- NumPy
- imageio
- Pillow
- 32x32x1 input
- 32x32x1 output
- 3x3 kernel
- number of epoch=5000
- mini batch size=128
- Recurrent structure (Vanilla RNN)
- Downscaling interpolation to half size (preprocess): AREA
- ADAM optimizer setting: learning rate=0.003, β1=0.9, β2=0.999, ε=1E−08
- Downscaling interpolation (preprocess): NEAREST_NEIGHBOR
- ADAM optimizer setting: learning rate=0.0001, β1=0.9, β2=0.999, ε=1E−08
- Downscaling interpolation (preprocess): BICUBIC
- ADAM optimizer setting: learning rate=0.0001, β1=0.9, β2=0.999, ε=1E−08
- Original paper
- My program architecture is inspired by some good tutorials and examples
AbortedError (see above for traceback): Operation received an exception:Status: 5, message: could not create a view primitive descriptor, in file tensorflow/core/kernels/mkl_slice_op.cc:435
[[node gradients/concat_2_grad/Slice_1 (defined at C:\srcnn-rnn\framework\model.py:70) ]]
- 모델 구축도 다 잘 되는데 sess.run할때 뜬금없이 tf.concat 관련하여 에러가 발생
- 이미 보고된 버그이지만 비교적 사례가 적은데, 인텔 mkl에 관계된 것으로 보임 tensorflow/tensorflow#17494
- 그런데 또 노트북에서는 잘 돌아감을 확인. AMD CPU 문제?
- 텐서플로우 GPU 버전에서는 확인해보지 않음
- 웹상에 공개된 (아마도) 유일한 해결책은 Python 3.6, Tensorflow 1.12로 버전을 낮추는 것 https://blog.csdn.net/Bing_bing_bing_/article/details/90211188
tensorboard --logdir=logs/ --samples_per_plugin images=100