/Medical-Image-Segmentation-Benchmarks

A Pytorch implement of medical image segmentation U-shape architecture benchmarks

Primary LanguagePythonMIT LicenseMIT

Medical 2D Image Segmentation Benchmarks

ushape

For easy evaluation and fair comparison on 2D medical image segmentation method, we aim to collect and build a medical image segmentation U-shape architecture benchmark to implement the medical 2d image segmentation tasks.

News 🥰
  • CMUNeXt is now on this repo ! 😘

This repositories has collected and re-implemented medical image segmentation networks based on U-shape architecture are followed:

Network Original code Reference
U-Net Caffe MICCAI'15
Attention U-Net Pytorch Arxiv'18
U-Net++ Pytorch MICCAI'18
U-Net 3+ Pytorch ICASSP'20
TransUnet Pytorch Arxiv'21
MedT Pytorch MICCAI'21
UNeXt Pytorch MICCAI'22
SwinUnet Pytorch ECCV'22
CMU-Net Pytorch ISBI'23
CMUNeXt Pytorch Arxiv'23

Datasets

Please put the BUSI dataset or your own dataset as the following architecture.

├── Medical-Image-Segmentation-Benchmarks
    ├── data
        ├── busi
            ├── images
            |   ├── benign (10).png
            │   ├── malignant (17).png
            │   ├── ...
            |
            └── masks
                ├── 0
                |   ├── benign (10).png
                |   ├── malignant (17).png
                |   ├── ...
        ├── your 2D dataset
            ├── images
            |   ├── 0a7e06.png
            │   ├── 0aab0a.png
            │   ├── 0b1761.png
            │   ├── ...
            |
            └── masks
                ├── 0
                |   ├── 0a7e06.png
                |   ├── 0aab0a.png
                |   ├── 0b1761.png
                |   ├── ...
    ├── src
    ├── main.py
    ├── split.py

Environments

  • GPU: NVIDIA GeForce RTX4090 GPU
  • Pytorch: 1.13.0 cuda 11.7
  • cudatoolkit: 11.7.1
  • scikit-learn: 1.0.2

Training

You can first split your dataset:

python split.py --dataset_root ./data --dataset_name busi

Then, training and validating your dataset:

python main.py --model [CMUNeXt] --base_dir ./data/busi --train_file_dir busi_train.txt --val_file_dir busi_val.txt --base_lr 0.01 --epoch 300 --batch_size 8

Results on BUSI

We train the U-shape based networks with BUSI dataset. The BUSI collected 780 breast ultrasound images, including normal, benign and malignant cases of breast cancer with their corresponding segmentation results. We only used benign and malignant images (647 images). And we randomly split thrice, 70% for training and 30% for validation. In addition, we resize all the images 256×256 and perform random rotation and flip for data augmentation.

Method Params (M) FPS GFLOPs IoU F1-value
U-Net 34.52 139.32 65.52 68.61±2.86 76.97±3.10
Attention U-Net 34.87 129.92 66.63 68.55±3.22 76.88±3.50
U-Net++ 26.90 125.50 37.62 69.49±2.94 78.06±3.25
U-Net3+ 26.97 50.60 199.74 68.38±3.35 76.88±3.68
TransUnet 105.32 112.95 38.52 71.39±2.37 79.85±2.59
MedT 1.37 22.97 2.40 63.36±1.56 73.37±1.63
SwinUnet 27.14 392.21 5.91 54.11±2.29 65.46±1.91
UNeXt 1.47 650.48 0.58 65.04±2.71 74.16±2.84
CMU-Net 49.93 93.19 91.25 71.42±2.65 79.49±2.92
CMUNeXt 3.14 471.43 7.41 71.56±2.43 79.86±2.58

Acknowledgements:

This code-base uses helper functions from CMU-Net and Image_Segmentation.

Other QS:

If you have any questions or suggestions about this project, please contact me through email: 543759045@qq.com