This is implementation of the paper Do Convolutional Networks need to be Deep for Text Classification?
# for character-level
python3 char_shallownet.py
# for word-level
python3 word_shallownet.py
There are some arguments
arguments | default | note |
---|---|---|
data_dir | '../dataset/' | |
pos_file | 'rt-polarity.pos' | |
neg_file | 'rt-polarity.neg' | |
val_dir | None | |
val_pos_file | None | |
val_neg_file | None | |
model_dir | './model/' | |
num_class | 2 | |
num_per_filters | char_shallownet : 700 word_shallownet : 100 |
|
vocab | 'vocab.pkl' | only in word-level if you set None, automatically download via gluonnlp |
max_seq_len | char_shallownet : 1014 word_shallownet: None |
|
batch_size | 128 | |
seed | 10 | |
learning_rate | 0.001 | |
epochs | 1 |
# for character-level
python3 char_densenet.py
# for word-level
python3 word_densenet.py
There are some arguments
arguments | default | note |
---|---|---|
data_dir | '../dataset/' | |
pos_file | 'rt-polarity.pos' | |
neg_file | 'rt-polarity.neg' | |
val_dir | None | |
val_pos_file | None | |
val_neg_file | None | |
model_dir | './model/' | |
num_class | 2 | |
vocab | 'vocab.pkl' | only in word-level if you set None, automatically download via gluonnlp |
max_seq_len | char_shallownet : 1014 word_shallownet: None |
|
batch_size | 128 | |
seed | 10 | |
learning_rate | 0.001 | |
epochs | 1 |