Equivariant Invariant Graph Enabled Neural Network
This below installing guide should get you started on Mac, without using GPUs.
-
conda install pytorch -c pytorch
-
PyTorch Geometrics. PyG now supports installing via conda, much easier than before. And the installing guide on
e3nn
for PyG is not recommended.conda install pyg -c pyg -c conda-forge
-
conda install pytorch-lightning==1.5.2 torchmetrics==0.6.0 lightning-bolts -c conda-forge
-
pip install e3nn
-
This repo
git clone https://github.com/mjwen/eigenn.git cd eigenn pip install -e .
-
We use wandb for experiments tracking and management; it is free. Get an account at their website and then the below commands are all you need.
pip install wandb wandb login
Run this script train_atomic.py
python train_atomic.py --config <config file>
If config
is not provided, the default minimal_atomic.yaml
is used.
The model used in train_atomic.py
is built at atomic_tensor_model.py
Run this scirpt train.py
python train.py --config <config file>
If config
is not provided, the default minimal.yaml
is used.
The model used in train.py
is built at nequip_energy_model.py
To get help
python train[_atomic].py --help
Under the hood, we use Lightning CLI to build the interface, more usage info at here.