M-BCJR Algorithm
A soft input, soft-output MATLAB implementation of the M-BCJR Algorithm from the paper:
Anderson, J. B., & Prlja, A. (2010, October). Turbo equalization and an
M-BCJR algorithm for strongly narrowband intersymbol interference. In
Information Theory and its Applications (ISITA), 2010 International
Symposium on (pp. 261-266). IEEE
Class Inputs/Outputs
CONSTRUCTOR:
function obj = M_BCJR_decoder(v)
@input 'v' ISI channel of length M_T taps.
STEP:
[a_APP_LLR] = step(obj,y,A_ext_LLR,N_0,M,SO)
@input 'y' recieved symbols.
@input 'a_ext_LLR' Extrinsic LLR information each symbol.
@input 'N_0' Noise information for each symbol.
@input 'M' number of survivors at each trellis step.
@output 'a_APP_LLR' APP LLR of each symbol (i.e. soft output)
Code Example
Define an inter-symbol interference (ISI) channel, v and create M_BCJR object.
>>v=[1,0.8,0.3,0.15,0.07];
>>BCJR_dec=M_BCJR_decoder(v);
>>M_T=length(v);
Create test data and define noise power.
>>d=[0,1,0,1]; % Short binary example sequence.
>>N_0=0.01;
>>data_len=length(d);
BPSK modulate data and pad signal for M-BCJR termination.
>>x =[ -1 * ones(1,M_T),2*data-1,-1 * ones(1,M_T)]; % Pad with -1 for BCJR algorithm.
>>rx_sig = conv(x,v) + randn(size(conv(x,v))).*sqrt(N_0)% Add noise here.
>>y=rx_sig(M_T+1:2*M_T+data_len-1);
Decode the received signal.
>> x_prior_LLR = zeros(data_len,1); % Assume 1/-1 with equal prob.
>> x_LLR = BCJR_dec.step(y, ,N_0*ones(data_len,1),M)
x_LLR =
-10 10 -10 10
Turbo Decoder
In a turbo decoder configuration (coupled with an outer code), x_prior_LLR can be updated on each iteration by feeding back the extrinsic information of the codeword.