/tensorflow-build

TensorFlow binaries supporting AVX, FMA, SSE

This repository contains custom builds of tensorflow. To install one of these on your system, download the correct file according to your version of python and gcc and run the following command.

pip install --ignore-installed --upgrade /path/to/binary.whl

You can also install directly from github using

pip install --ignore-installed --upgrade "Download URL"
TF HW OS GCC Python Supports
1.1.0 CPU Arch Linux 6.3 3.6.1 FMA, AVX, AVX2, SSE4.1, SSE4.2, XLA Download
1.2.0rc1 CPU Arch Linux 6.3 3.6.1 Optimized for Intel Core i7-4500U Download
1.2.0rc2 CPU Arch Linux 7.1 3.6.1 Optimized for Intel Core i7-4500U + MKL Download
1.4.0 CPU Ubuntu 16.04 5.4 3.5.2 FMA, AVX, AVX2, SSE4.1, SSE4.2 Download
1.4.0 CPU Ubuntu 16.04 5.4 3.6.3 FMA, AVX, AVX2, SSE4.1, SSE4.2 Download
1.4.0 CPU Ubuntu 16.04 5.4 2.7.12 FMA, AVX, AVX2, SSE4.1, SSE4.2 Download
1.4.0rc1 CPU Ubuntu 16.10 6.2 3.6.0b2 SSE4.1, SSE4.2, AVX Download
1.2.1 CPU macOS Sierra clang-802.0.42 2.7.13 AVX, SSE4.1, SSE4.2 Download
1.3.0rc2 CPU macOS Sierra clang-802.0.42 2.7.13 FMA, AVX, AVX2, SSE4.1, SSE4.2 Download
1.2.1 CPU macOS Sierra clang-802.0.42 3.6.1 AVX, SSE4.1, SSE4.2 Download
1.2.1 CPU macOS Sierra clang-802.0.42 3.6.1 FMA, AVX, AVX2, SSE4.1, SSE4.2 Download
1.4.0 CPU macOS Sierra clang-802.0.42 3.6.3 SSE4.1, SSE4.2, AVX, AVX2, FMA Download
1.4.1 CPU macOS Sierra clang-900.0.39.2 2.7.14 SSE4.1, SSE4.2, AVX, AVX2, FMA Download
1.4.1 CPU macOS High Sierra clang-900.0.38 3.6.2 SSE4.1, SSE4.2, AVX, AVX2, FMA Download
1.4.1 CPU macOS Sierra clang-900.0.39.2 2.7.13 AVX, SSE4.1, SSE4.2 Download
1.4.1 CPU macOS Sierra clang-900.0.39.2 3.6.1 AVX, SSE4.1, SSE4.2 Download

External Links (Please consider giving a ⭐ or 👍 to the original sources in case you use external links)

TF HW OS Python Supports
1.1-1.4 CPU, GPU Ubuntu 16.04 2.7, 3.5, 3.6 FMA, AVX, AVX2, SSE4.1, SSE4.2, MPI Link
1.2.1 CPU Ubuntu 17.04 3.5.3 XLA, AVX, AVX2, FMA, SSE4.1, SSE4.2 Link

If you find a binary present on the internet, consider opening a pull request to add a link to it

Visit tensorflow.org for instructions on building tensorflow for your machine

@lakshayg_