mlcommons/algorithmic-efficiency
MLCommons Algorithmic Efficiency is a benchmark and competition measuring neural network training speedups due to algorithmic improvements in both training algorithms and models.
PythonApache-2.0
Stargazers
- abduld
- ahedalboodyCESI LINEACT, Innovation and research laboratory
- Ali-GallyTH Brandenburg,,Wirtschaftsinformatik''
- ali-robot
- alpv95Stanford University
- andres-frUniversity of Tübingen
- anruijianLoblaw Digital
- ArashAhmadian
- c-ali
- cccntuTaiwan
- cydawnZhejiang University
- f-dangel@ProbabilisticNumerics @VectorInstitute
- fsschneider
- gauthamkrishna-gUniversity of Texas at Austin
- hjmshiFacebook
- jaehleeAnthropic
- jarbluSpheryx, Inc.
- lgeiger@plumerai @larq
- ltatzelUniversity of Tübingen
- madvnColumbus, OH, U.S.A.
- mohamadmansourXAmerican University of Beirut
- Murplugg
- mvoitko@HoneycombSoft
- nexuslrf
- pomonam@VectorInstitute
- prolearnerIIT
- PWhiddySeattle WA
- research4pan
- runameUniversity of Cambridge
- ryanholbrookKaggle
- sebysrMilan, Italy
- solidbam
- stwerner97SICK AG
- vardhandongreUniversity of Illinois
- vvvm23Cohere
- xuzhao9@pytorch