SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification
Pytorch implementation of SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification
To train a SimDCGAN on the MIT-BIH training data:
$ python3 sim_gan/gan_models/train_sim_gan.py --GAN_TYPE <gan_type> --MODEL_DIR <model_dir> --BEAT_TYPE <beat_type> --BATCH_SIZE <batch_size> --NUM_ITERATIONS <num_iterations>
Where gan_type is one of the strings: {SimDCGAN, SimVGAN}
To train a Regular VanillaGAN or DCGAN on the MIT-BIH training data:
$ python3 sim_gan/gan_models/train_gan.py --GAN_TYPE <gan_type> --MODEL_DIR <model_dir> --BEAT_TYPE <beat_type> --BATCH_SIZE <batch_size> --NUM_ITERATIONS <num_iterations>
Where gan_type is one of the strings: {DCGAN, VGAN}
Tomer Golany, Daniel Freedman and Kira Radinsky