This repository can be used to run the Server Client Split Learning Framework for benchmarking CIFAR-10 on n clients. FOllow the below steps to reproduce the results obtained of Setting-1 of the paper https://arxiv.org/abs/2303.10624
Launch the below instance(s) in the same VPC and Subnet of a AWS region.
- Instance 1: t2.xlarge (16 GB RAM)
- Instance 2: t2.medium (4 GB RAM)
-
Each instance needs to initialized with the necessary libraries within a conda environment preferably.
-
Libraries needed
-
certifi 2022.12.7
-
charset-normalizer 2.1.1
-
filelock 3.9.0
-
idna 3.4
-
Jinja2 3.1.2
-
joblib 1.2.0
-
MarkupSafe 2.1.2
-
mpmath 1.2.1
-
networkx 3.0
-
numpy 1.24.2
-
pandas 2.0.0
-
Pillow 9.3.0
-
pip 23.0.1
-
PuLP 2.7.0
-
python-dateutil 2.8.2
-
pytz 2023.3
-
requests 2.28.1
-
scikit-learn 1.2.2
-
scipy 1.10.1
-
setuptools 67.6.1
-
six 1.16.0
-
sympy 1.11.1
-
threadpoolctl 3.1.0
-
torch 2.0.0+cpu
-
torchaudio 2.0.1+cpu
-
torchvision 0.15.1+cpu
-
typing_extensions 4.4.0
-
tzdata 2023.3
-
urllib3 1.26.13
-
wheel 0.40.0
- Datapoints Accuracy
- "50","76.17"
- "150","81.42"
- "250","83.57"
- "350","85"
- "500","85.54"