This ModelOp Center monitor runs and compares Kolmogorov-Smirnov, Epps-Singleton, Jensen-Shannon, Kullback-Leibler, and Pandas summary on input data. This "extended" version also provides detailed metrics for each unique value for each Categorical feature.
Type | Number | Description |
---|---|---|
Baseline Data | 1 | A dataset corresponding to training/reference data |
Sample Data | 1 | A dataset corresponding to a slice of production data |
- Underlying
BUSINESS_MODEL
being monitored has a job json asset. - Input data contains at least one
numerical
column or onecategorical
column.
init
function accepts the job json asset and validates the input schema (corresponding to theBUSINESS_MODEL
being monitored).metrics
function instantiates the Data Drift Monitor class and uses the job json asset to determine thenumerical_columns
and/orcategorical_columns
accordingly.- The Epps-Singleton, Jensen-Shannon, Kullback-Leibler, Kolmogorov-Smirnov, and Pandas.describe() data drift tests are run.
- Each test result is appended to the list of
data_drift
tests to be returned by the model.
{
"data_drift": [
<epps_singleton_test_result>,
<jensen_shannon_test_result>,
<kullback_leibler_test_result>,
<kolmogorov_smirnov_test_result>,
<pandas_summary_test_result>
]
}