/StockNN

Stock Market Prediction Using Neural Network Models (Backpropagation, RNN, RBF) Keras with Tensorflow backend

Primary LanguagePython

StockNN

Stock Prices Prediction Using Neural Network Models (Backpropagation, RNN LSTM, RBF) implemented in keras with Tensorflow backend to predict the daily closing price.

Class Version Usage


snn = stocknn().RNN()

snn = snn.preprocess('AAPL.csv', test_size=0.2)
snn = snn.train(batch_size=32, epochs=50)

or

snn = stocknn().BKP().preprocess('AAPL.csv', test_size=0.5).train(batch_size=16, epochs=25)
model = snn.save_model('AAPL')
mape = snn.test(model)[0]
pred = snn.predict(100)[1]

StockNN Subclasses

[Subclasses]:
    stocknn().RNN()            Recurrent Neural Networks.
    stocknn().RBF()            Radial Basis Function Networks.
    stocknn().BKP()            Back-propagation Networks.

Dataset

All datasets are obtained using pystocklib.

Requirement

  • Keras
  • Pandas
  • numpy
  • scikit-learn
  • matplotlib

Credit

  • PetraVidnerova