SAM CLI (Beta)
Join the SAM developers channel (#samdev) on Slack to collaborate with fellow community members and the AWS SAM team.
``sam`` is the AWS CLI tool for managing Serverless applications written with AWS Serverless Application Model (SAM). SAM CLI can be used to test functions locally, start a local API Gateway from a SAM template, validate a SAM template, generate sample payloads for various event sources, and generate a SAM project in your favorite Lambda Runtime.
- SAM CLI (Beta)
Main features
- Develop and test your Lambda functions locally with
sam local
and Docker - Invoke functions from known event sources such as Amazon S3, Amazon DynamoDB, Amazon Kinesis, etc.
- Start local API Gateway from a SAM template, and quickly iterate over your functions with hot-reloading
- Validate SAM templates
- Get started with boilerplate Serverless Service in your chosen Lambda
Runtime
sam init
Installation
Prerequisites
- Docker
- Python2.7 (Python3+ not yet supported)
Running Serverless projects and functions locally with SAM CLI requires
Docker to be installed and running. SAM CLI will use the DOCKER_HOST
environment variable to contact the docker daemon.
- macOS: Docker for Mac
- Windows: Docker Toolbox
- Linux: Check your distroâs package manager (e.g. yum install docker)
For macOS and Windows users: SAM CLI requires that the project directory (or any parent directory) is listed in Docker file sharing options.
Verify that docker is working, and that you can run docker commands from the CLI (e.g. âdocker psâ). You do not need to install/fetch/pull any containers â SAM CLI will do it automatically as required.
Upgrade from Version 0.2.11 or Below
Uninstall previous CLI Version
npm uninstall -g aws-sam-local
To upgrade to Version 0.3.0 or above, follow instructions below:
Windows, Linux, macOS with PIP [Recommended]
Verify Python Version is 2.7.
The easiest way to install ``sam`` is to use PIP.
pip install --user aws-sam-cli
Verify the installation worked:
sam --version
Upgrading via pip
To update ``sam`` once installed via pip:
pip install --user --upgrade aws-sam-cli
Build From Source
First, install Python(2.7) on your machine, then run the following:
# Clone the repository
$ git clone git@github.com/awslabs/aws-sam-cli.git
# cd into the git
$ cd aws-sam-cli
# pip install the repository
$ pip install --user -e .
Install with PyEnv
# Install PyEnv (https://github.com/pyenv/pyenv#installation)
$ brew update
$ brew install pyenv
# Initialize pyenv using bash_profile
$ echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n eval "$(pyenv init -)"\nfi\nexport PATH="~/.pyenv/bin:$PATH"' >> ~/.bash_profile
# or using zshrc
$ echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n eval "$(pyenv init -)"\nfi\nexport PATH="~/.pyenv/bin:$PATH"' >> ~/.zshrc
# restart the shell
$ exec "$SHELL"
# Install Python 2.7
$ pyenv install 2.7.14
$ pyenv local 2.7.14
# Install the CLI
$ pip install --user aws-sam-cli
# Verify your installation worked
$ sam âversion
Troubleshooting
General Issues
- If you are seeing sam command not found, this is likely due to the installation using the --user and adding sam to a path that is not in your $PATH.
# Find your path Python User Base path (where Python --user will install packages/scripts)
USER_BASE_PATH="$(python -m site --user-base)"
# Add this path to your $PATH
export PATH=$USER_BASE_PATH:$PATH
You can also try an installing aws-sam-cli without --user
# Uninstall aws-sam-cli from the --user path
pip uninstall --user aws-sam-cli
pip install aws-sam-cli
Mac Issues
- [Errno 13] Permission denied If you had installed Python using
Homebrew, you might need to use
sudo
to install SAM CLI:
sudo pip install aws-sam-cli
- TLSV1_ALERT_PROTOCOL_VERSION:
If you get an error something similar to:
Could not fetch URL https://pypi.python.org/simple/click/: There was a problem confirming the ssl certificate: [SSL: TLSV1_ALERT_PROTOCOL_VERSION] tlsv1 alert protocol version (_ssl.c:590) - skipping
then you are probably using the default version of Python that came with your Mac. This is outdated. So make sure you install Python again using homebrew and try again:
brew install python@2
Followed by:
pip install --user aws-sam-cli
Usage
``sam`` requires a SAM template in order to know how to invoke your
function locally, and itâs also true for spawning API Gateway locally -
If no template is specified template.yaml
will be used instead.
You can find sample SAM templates either under ``samples`` located in this repo or by visiting SAM official repository.
Invoke functions locally
You can invoke your function locally by passing its SAM logical ID
and an event file. Alternatively, sam local invoke
accepts stdin as
an event too.
Resources:
Ratings: # <-- Logical ID
Type: 'AWS::Serverless::Function'
...
Syntax
# Invoking function with event file
$ sam local invoke "Ratings" -e event.json
# Invoking function with event via stdin
$ echo '{"message": "Hey, are you there?" }' | sam local invoke "Ratings"
# For more options
$ sam local invoke --help
Generate sample event source payloads
To make local development and testing of Lambda functions easier, you can generate mock/sample event payloads for the following services:
- S3
- Kinesis
- DynamoDB
- Cloudwatch Scheduled Event
- Cloudtrail
- API Gateway
Syntax
sam local generate-event <service>
Also, you can invoke an individual lambda function locally from a sample event payload - Hereâs an example using S3:
sam local generate-event s3 --bucket <bucket> --key <key> | sam local invoke <function logical id>
For more options, see sam local generate-event --help
.
Run API Gateway locally
sam local start-api
spawns a local API Gateway to test HTTP
request/response functionality. Features hot-reloading to allow you to
quickly develop, and iterate over your functions.
Syntax
sam local start-api
``sam`` will automatically find any functions within your SAM
template that have Api
event sources defined, and mount them at the
defined HTTP paths.
In the example below, the Ratings
function would mount
ratings.py:handler()
at /ratings
for GET
requests.
Ratings:
Type: AWS::Serverless::Function
Properties:
Handler: ratings.handler
Runtime: python3.6
Events:
Api:
Type: Api
Properties:
Path: /ratings
Method: get
By default, SAM uses Proxy
Integration
and expects the response from your Lambda function to include one or
more of the following: statusCode
, headers
and/or body
.
For example:
// Example of a Proxy Integration response
exports.handler = (event, context, callback) => {
callback(null, {
statusCode: 200,
headers: { "x-custom-header" : "my custom header value" },
body: "hello world"
});
}
For examples in other AWS Lambda languages, see this page.
If your function does not return a valid Proxy Integration response then you will get a HTTP 500 (Internal Server Error) when accessing your function. SAM CLI will also print the following error log message to help you diagnose the problem:
ERROR: Function ExampleFunction returned an invalid response (must include one of: body, headers or statusCode in the response object)
Debugging Applications
Both sam local invoke
and sam local start-api
support local
debugging of your functions.
To run SAM Local with debugging support enabled, just specify
--debug-port
or -d
on the command line.
# Invoke a function locally in debug mode on port 5858
$ sam local invoke -d 5858 <function logical id>
# Start local API Gateway in debug mode on port 5858
$ sam local start-api -d 5858
Note: If using sam local start-api
, the local API Gateway will
expose all of your Lambda functions but, since you can specify a single
debug port, you can only debug one function at a time. You will need to
hit your API before SAM CLI binds to the port allowing the debugger to
connect.
Here is an example showing how to debug a NodeJS function with Microsoft Visual Studio Code:
In order to setup Visual Studio Code for debugging with AWS SAM CLI, use the following launch configuration:
{ "version": "0.2.0", "configurations": [ { "name": "Attach to SAM Local", "type": "node", "request": "attach", "address": "localhost", "port": 5858, "localRoot": "${workspaceRoot}", "remoteRoot": "/var/task", "protocol": "legacy" } ] }
Note: Node.js versions below 7 (e.g. Node.js 4.3 and Node.js 6.10)
use the legacy
protocol, while Node.js versions including and above
7 (e.g. Node.js 8.10) use the inspector
protocol. Be sure to specify
the corresponding protocol in the protocol
entry of your launch
configuration.
Debugging Python functions
Unlike Node.JS and Java, Python requires you to enable remote debugging
in your Lambda function code. If you enable debugging with
--debug-port
or -d
for a function that uses one of the Python
runtimes, SAM CLI will just map through that port from your host machine
through to the Lambda runtime container. You will need to enable remote
debugging in your function code. To do this, use a python package such
as remote-pdb. When
configuring the host the debugger listens on in your code, make sure to
use 0.0.0.0
not 127.0.0.1
to allow Docker to map through the
port to your host machine.
Please note, due to a open
bug with
Visual Studio Code, you may get a
Debug adapter process has terminated unexpectedly
error when
attempting to debug Python applications with this IDE. Please track
the GitHub
issue for
updates.
Passing Additional Runtime Debug Arguments
To pass additional runtime arguments when debugging your function, use
the environment variable DEBUGGER_ARGS
. This will pass a string
of arguments directly into the run command SAM CLI uses to start your
function.
For example, if you want to load a debugger like iKPdb at runtime of
your Python function, you could pass the following as
DEBUGGER_ARGS
:
-m ikpdb --ikpdb-port=5858 --ikpdb-working-directory=/var/task/ --ikpdb-client-working-directory=/myApp --ikpdb-address=0.0.0.0
.
This would load iKPdb at runtime with the other arguments youâve
specified. In this case, your full SAM CLI command would be:
$ DEBUGGER_ARGS="-m ikpdb --ikpdb-port=5858 --ikpdb-working-directory=/var/task/ --ikpdb-client-working-directory=/myApp --ikpdb-address=0.0.0.0" echo {} | sam local invoke -d 5858 myFunction
You may pass debugger arguments to functions of all runtimes.
Connecting to docker network
Both sam local invoke
and sam local start-api
support connecting
the create lambda docker containers to an existing docker network.
To connect the containers to an existing docker network, you can use the
--docker-network
command-line argument or the SAM_DOCKER_NETWORK
environment variable along with the name or id of the docker network you
wish to connect to.
# Invoke a function locally and connect to a docker network
$ sam local invoke --docker-network my-custom-network <function logical id>
# Start local API Gateway and connect all containers to a docker network
$ sam local start-api --docker-network b91847306671 -d 5858
Validate SAM templates
Validate your templates with $ sam validate
. Currently this command
will validate that the template provided is valid JSON / YAML. As with
most SAM CLI commands, it will look for a template.[yaml|yml]
file
in your current working directory by default. You can specify a
different template file/location with the -t
or --template
option.
Syntax
$ sam validate
<path-to-file>/template.yml is a valid SAM Template
Note: The validate command requires AWS credentials to be configured. See IAMCreds_.
Package and Deploy to Lambda
Once you have developed and tested your Serverless application locally,
you can deploy to Lambda using sam package
and sam deploy
command. package
command will zip your code artifacts, upload to S3
and produce a SAM file that is ready to be deployed to Lambda using AWS
CloudFormation. deploy
command will deploy the packaged SAM template
to CloudFormation. Both sam package
and sam deploy
are identical
to their AWS CLI equivalents commands
`aws cloudformation package
<http://docs.aws.amazon.com/cli/latest/reference/cloudformation/package.html>`__
and
`aws cloudformation deploy
<http://docs.aws.amazon.com/cli/latest/reference/cloudformation/deploy/index.html>`__
respectively. Please consult the AWS CLI command documentation for
usage.
Example:
# Package SAM template
$ sam package --template-file sam.yaml --s3-bucket mybucket --output-template-file packaged.yaml
# Deploy packaged SAM template
$ sam deploy --template-file ./packaged.yaml --stack-name mystack --capabilities CAPABILITY_IAM
Getting started
- Check out our Getting Started Guide for more details
Advanced
Compiled Languages
Java
To use SAM CLI with compiled languages, such as Java that require a
packaged artifact (e.g. a JAR, or ZIP), you can specify the location of
the artifact with the AWS::Serverless::Function
CodeUri
property
in your SAM template.
For example:
AWSTemplateFormatVersion: 2010-09-09 Transform: AWS::Serverless-2016-10-31 Resources: ExampleJavaFunction: Type: AWS::Serverless::Function Properties: Handler: com.example.HelloWorldHandler CodeUri: ./target/HelloWorld-1.0.jar Runtime: java8
You should then build your JAR file using your normal build process. Please note that JAR files used with AWS Lambda should be a shaded JAR file (or uber jar) containing all of the function dependencies.
// Build the JAR file $ mvn package shade:shade // Invoke with SAM Local $ echo '{ "some": "input" }' | sam local invoke // Or start local API Gateway simulator $ sam local start-api
You can find a full Java example in the samples/java folder
.NET Core
To use SAM Local with compiled languages, such as .NET Core that require a packaged artifact (e.g. a ZIP), you can specify the location of the artifact with the AWS::Serverless::Function
CodeUri
property in your SAM template.
For example:
AWSTemplateFormatVersion: 2010-09-09
Transform: AWS::Serverless-2016-10-31
Resources:
ExampleDotNetFunction:
Type: AWS::Serverless::Function
Properties:
Handler: HelloWorld::HelloWorld.Function::Handler
CodeUri: ./artifacts/HelloWorld.zip
Runtime: dotnetcore2.0
You should then build your ZIP file using your normal build process.
You can generate a .NET Core example by using the sam init --runtime dotnetcore
command.
IAM Credentials
SAM CLI will invoke functions with your locally configured IAM credentials.
As with the AWS CLI and SDKs, SAM CLI will look for credentials in the following order:
- Environment Variables (
AWS_ACCESS_KEY_ID
,AWS_SECRET_ACCESS_KEY
). - The AWS credentials file (located at
~/.aws/credentials
on Linux, macOS, or Unix, or atC:\Users\USERNAME \.aws\credentials
on Windows). - Instance profile credentials (if running on Amazon EC2 with an assigned instance role).
In order to test API Gateway with a non-default profile from your AWS
credentials file append --profile <profile name>
to the
start-api
command:
// Test API Gateway locally with a credential profile. $ sam local start-api --profile some_profile
See this Configuring the AWS CLI for more details.
Lambda Environment Variables
If your Lambda function uses environment variables, you can provide values for them will passed to the Docker container. Here is how you would do it:
For example, consider the SAM template snippet:
Resources:
MyFunction1:
Type: AWS::Serverless::Function
Properties:
Handler: index.handler
Runtime: nodejs4.3
Environment:
Variables:
TABLE_NAME: prodtable
BUCKET_NAME: prodbucket
MyFunction2:
Type: AWS::Serverless::Function
Properties:
Handler: app.handler
Runtime: nodejs4.3
Environment:
Variables:
STAGE: prod
TABLE_NAME: prodtable
Environment Variable file
Use --env-vars
argument of invoke
or start-api
commands to
provide a JSON file that contains values for environment variables
defined in your function. The file should be structured as follows:
{
"MyFunction1": {
"TABLE_NAME": "localtable",
"BUCKET_NAME": "testBucket"
},
"MyFunction2": {
"TABLE_NAME": "localtable",
"STAGE": "dev"
},
}
$ sam local start-api --env-vars env.json
Shell environment
Variables defined in your Shellâs environment will be passed to the
Docker container, if they map to a Variable in your Lambda function.
Shell variables are globally applicable to functions ie. If two
functions have a variable called TABLE_NAME
, then the value for
TABLE_NAME
provided through Shellâs environment will be availabe to
both functions.
Following command will make value of mytable
available to both
MyFunction1
and MyFunction2
$ TABLE_NAME=mytable sam local start-api
Combination of Shell and Environment Variable file
For greater control, you can use a combination shell variables and external environment variable file. If a variable is defined in both places, the one from the file will override the shell. Here is the order of priority, highest to lowest. Higher priority ones will override the lower.
- Environment Variable file
- Shellâs environment
- Hard-coded values from the template
Identifying local execution from Lambda function code
When your Lambda function is invoked using SAM CLI, it sets an
environment variable AWS_SAM_LOCAL=true
in the Docker container.
Your Lambda function can use this property to enable or disable
functionality that would not make sense in local development. For
example: Disable emitting metrics to CloudWatch (or) Enable verbose
logging etc.
Static Assets
Often, itâs useful to serve up static assets (e.g CSS/HTML/Javascript
etc) when developing a Serverless application. On AWS, this would
normally be done with CloudFront/S3. SAM CLI by default looks for a
./public/
directory in your SAM project directory and will serve up
all files from it at the root of the HTTP server when using
sam local start-api
. You can override the default static asset
directory by using the -s
or --static-dir
command line flag. You
can also disable this behaviour completely by setting
--static-dir ""
.
Local Logging
Both invoke
and start-api
command allow you to pipe logs from
the functionâs invocation into a file. This will be useful if you are
running automated tests against SAM CLI and want to capture logs for
analysis.
Example:
$ sam local invoke --log-file ./output.log
Remote Docker
Sam CLI loads function code by mounting filesystem to a Docker Volume. As a result, The project directory must be pre-mounted on the remote host where the Docker is running.
If mounted, you can use the remote docker normally using
--docker-volume-basedir
or environment variable
SAM_DOCKER_VOLUME_BASEDIR
.
Example - Docker Toolbox (Windows):
When you install and run Docker Toolbox, the Linux VM with Docker is automatically installed in the virtual box.
The /c/ path for this Linux VM is automatically shared with C: on the host machine.
sam local invoke --docker-volume-basedir /c/Users/shlee322/projects/test "Ratings"
Project Status
- [ ] Python Versions support
- [x] Python 2.7
- [ ] Python 3.6
- [ ] Supported AWS Lambda Runtimes
- [x]
nodejs
- [x]
nodejs4.3
- [x]
nodejs6.10
- [x]
nodejs8.10
- [x]
java8
- [x]
python2.7
- [x]
python3.6
- [ ]
dotnetcore1.0
- [x]
dotnetcore2.0
- [x]
- [x] AWS credential support
- [x] Debugging support
- [x] Inline Swagger support within SAM templates
- [x] Validating SAM templates locally
- [x] Generating boilerplate templates
- [x]
nodejs
- [x]
nodejs4.3
- [x]
nodejs6.10
- [x]
nodejs8.10
- [x]
java8
- [x]
python2.7
- [x]
python3.6
- [x]
dotnetcore1.0
- [x]
dotnetcore2.0
- [x]
Contributing
Contributions and feedback are welcome! Proposals and pull requests will be considered and responded to. For more information, see the CONTRIBUTING file.
A special thank you
SAM CLI uses the open source docker-lambda Docker images created by [@mhart](https://github.com/mhart).
Examples
You can find sample functions code and a SAM template used in this README under the samples folder within this repo.