/upscaler-pro

Clarity AI | AI Image Upscaler & Enhancer - free and open-source Magnific Alternative

Primary LanguagePythonGNU Affero General Public License v3.0AGPL-3.0

Clarity AI | AI Image Upscaler & Enhancer - free and open-source Magnific Alternative

App

API Replicate

GitHub Repo

Twitter Follow GitHub stars

Example video

Full Video on X/Twitter

👋 Hello

I build open source AI apps. To finance my work i also build paid versions of my code. But feel free to use the free code. I post features and new projects on https://twitter.com/philz1337x

🗞️ Updates

🚀 Options to use Clarity-Upscaler

🧑‍💻 App

The simplest option to use Clarity is with the app at ClarityAI.co

🐰 ComfyUI

  1. Open ComfyUI Manager, search for Clarity AI, and install the node.
  2. Create an API key at: ClarityAI.co/ComfyUI
  3. Add the API key to the node as a) envirement variable CAI_API_KEY OR b) to a cai_platform_key.txt text file OR c) in api_key_override field of the node.

Full instructions: https://github.com/philz1337x/ComfyUI-ClarityAI

⚙️ API

Use the API at: ClarityAI.co/API

Advanced: Deploy and run with cog (locally or cloud)

If you are not familiar with cog read: cog docs

  • Download Checkpoints and LoRa's from Cvitai and put in /models folder (a download_weights.py file to prepare everything with one file is a work in progress)
https://civitai.com/models/46422/juggernaut
https://civitai.com/models/82098?modelVersionId=87153
https://civitai.com/models/171159?modelVersionId=236130
  • predict with cog:
cog predict -i image="link-to-image"

Advanced: Run with A1111 webUI

https://github.com/AUTOMATIC1111/stable-diffusion-webui

  • Use these params:
masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1> Negative prompt: (worst quality, low quality, normal quality:2) JuggernautNegative-neg Steps: 18, Sampler: DPM++ 3M SDE Karras, CFG scale: 6.0, Seed: 1337, Size: 1024x1024, Model hash: 338b85bc4f, Model: juggernaut_reborn, Denoising strength: 0.35, Tiled Diffusion upscaler: 4x-UltraSharp, Tiled Diffusion scale factor: 2, Tiled Diffusion: {"Method": "MultiDiffusion", "Tile tile width": 112, "Tile tile height": 144, "Tile Overlap": 4, "Tile batch size": 8, "Upscaler": "4x-UltraSharp", "Upscale factor": 2, "Keep input size": true}, ControlNet 0: "Module: tile_resample, Model: control_v11f1e_sd15_tile, Weight: 0.6, Resize Mode: 1, Low Vram: False, Processor Res: 512, Threshold A: 1, Threshold B: 1, Guidance Start: 0.0, Guidance End: 1.0, Pixel Perfect: True, Control Mode: 1, Hr Option: HiResFixOption.BOTH, Save Detected Map: False", Lora hashes: "more_details: 3b8aa1d351ef, SDXLrender_v2.0: 3925cf4759af"