/POV_camas_management

This repository contains all data and code for the forthcoming paper "Harvesting strategies as evidence for 4,000 years of camas (Camassia quamash) management in the North American Columbia Plateau"

Camas Management on the North American Columbia Plateau

This repository contains all data and code for the forthcoming paper "Harvesting strategies as evidence for 4,000 years of camas (Camassia quamash) management in the North American Columbia Plateau."

Files included:

-Dataset S1. Radiocarbon dates used in this analysis.

-Dataset S2. Master spreadsheet with archaeological bulb data and provenience.

-Dataset S3. Modern, comparative Camassia quamash data 3.

-Dataset S4. δ18O data from Cleland lake, British Columbia, used in Figure 4 (Steinman et al. 2016).

-Dataset S5. Northeastern Pacific sea surface temperature (°C) reconstruction used in Figure 4 (Kienast and McKay 2001).

References

Carney, M. et al. Harvesting strategies as evidence for 4,000 years of camas (Camassia quamash) management in the North American Columbia Plateau. SocArXiv November 23. doi:10.31235/osf.io/c752m (2020).

Kienast, S. S. & McKay, J. L. Sea surface temperatures in the subarctic northeast Pacific reflect millennial‐scale climate oscillations during the last 16 kyrs. Geophysical Research Letters 28, 1563-1566 (2001).

Steinman, B. A. et al. Oxygen isotope records of Holocene climate variability in the Pacific Northwest. Quaternary Science Reviews 142, 40-60, doi:10.1016/j.quascirev.2016.04.012 (2016).

R code

Packages

library(dplyr)
library(resphape2)
library(DescTools)
library(rcompanion)

Load data

archbulbs.analysis <- read.csv(file.choose(), fileEncoding="UTF-8-BOM") #SI2_cvap_master
control.camas <- read.csv(file.choose(), fileEncoding="UTF-8-BOM") #SI3_control_camas
cleland <- read.csv(file.choose(), fileEncoding="UTF-8-BOM") #SI4_cleland_lake_d18o
sst <- read.csv(file.choose(), fileEncoding="UTF-8-BOM") #SI5_sea_surface_temp

Statistical analyses for bulb maturity and comparison with archaelogical materials

#Test if immature vs mature are from same sample populations
wilcox.test(NumLeaves ~ DateRange, data = control.camas)

#Test if charred ratios differ between control sample
wilcox.test(CharredRatio ~ DateRange, data = control.camas)

#Prep data for main graphs and analyses
subset_analysis <- archbulbs.analysis %>%
        select(NumLeaves, DateRange, Group)

subset_control <- control.camas %>%
        select(NumLeaves, DateRange, Group)

boxplotdf <- rbind(subset_analysis, subset_control)
boxplotdf <- na.omit(boxplotdf)

#Pairwise Mann-Whitney tests for comparing number of leaves across time/controls
pairwise.wilcox.test(boxplotdf$NumLeaves, boxplotdf$DateRange, p.adjust.method="BH")

#test for change in bulb size over time
kruskal.test(Ratio ~ DateRange, data = archbulbs.analysis) 
epsilonSquared(x = archbulbs.analysis$Ratio, g = archbulbs.analysis$DateRange)
kruskal.test(Weight ~ DateRange, data = archbulbs.analysis)
epsilonSquared(x = archbulbs.analysis$Weight, g = archbulbs.analysis$DateRange)

Figures 3 and 4

#Vector for visualizing leaf scale data by harvesting strategy
colorbygroup <- c("#0072b2", "#0072b2", "#cc79a7", "#0072b2", 
                  "#cc79a7", "#0072b2", "#0072b2", "#cc79a7", "#D3D3D3", "#D3D3D3")

#Figure 3 Boxplot of leaf scale numbers through time
plot.new()
boxplot(NumLeaves ~ DateRange, data = boxplotdf,
        legend("bottomleft", legend = c("Selective Harvesting", "Stripping", "Control"),
                col = c("#0072b2", "#cc79a7", "#D3D3D3"),
                bty = "n", pch=20 , pt.cex = 3, cex = 1, horiz = FALSE),
        las = 2,
        col = colorbygroup,
        ylab = "Number of Leaves", xlab = "",)
       
#Figure 4 Climate and bulb data graph

#Plot Figure 4 graph
dev.off()
par(mar = c(4, 4, 1, 1))
par(mfrow=c(4,1))
plot(cleland$age_calBP, cleland$d18OcarbVPDB, 
     type= "l", col= "#0072b2", pch=19, lwd = 1.5,
     xlim=c(0,4500), ylim=c(-1, -16),
     xlab = "", ylab="??18O")
ticks = c(500, 1000, 1500, 2500, 3000, 3500)
plot(sst$calyrBP, sst$sst.uk37, 
     type= "l", col= "#71C4EA", pch=19, lwd = 2,
     ylab="SST (°C)", 
     xlab = "", xlim=c(0, 4500), ylim= c(8, 11))
plot(archbulbs.analysis$MedianDate, archbulbs.analysis$Ratio, 
     type= "p", col="#7187EA", pch=19,   xlim=c(0,4500),
     xlab="", ylab = "Size Ratio")
plot(archbulbs.analysis$MedianDate, archbulbs.analysis$NumLeaves, 
     type = "p", col="#EA7187", xlab="Age BP", 
     ylab= "Num Leaves (n)", pch=19, 
     ylim = c(2.8, 4.2), xlim=c(0,4500))