/NiaPy

Python microframework for building nature-inspired algorithms. Official docs: http://niapy.readthedocs.io/en/stable/

Primary LanguagePythonMIT LicenseMIT

Check codestyle and test build PyPI Version PyPI - Python Version PyPI - Status PyPI - Downloads GitHub Release Date Anaconda-Server Badge Documentation Status GitHub license

Scrutinizer Code Quality Coverage Status GitHub commit activity Updates Average time to resolve an issue Percentage of issues still open GitHub contributors

DOI DOI

About

Nature-inspired algorithms are a very popular tool for solving optimization problems. Numerous variants of nature-inspired algorithms have been developed since the beginning of their era. To prove their versatility, those were tested in various domains on various applications, especially when they are hybridized, modified or adapted. However, implementation of nature-inspired algorithms is sometimes a difficult, complex and tedious task. In order to break this wall, NiaPy is intended for simple and quick use, without spending time for implementing algorithms from scratch.

NiaPy

Mission

Our mission is to build a collection of nature-inspired algorithms and create a simple interface for managing the optimization process. NiaPy will offer:

  • numerous benchmark functions implementations,
  • use of various nature-inspired algorithms without struggle and effort with a simple interface,
  • easy comparison between nature-inspired algorithms and
  • export of results in various formats (LaTeX, JSON, Excel).

Overview

Python micro framework for building nature-inspired algorithms. Official documentation is available here.

The micro framework features following algorithms:

Other examples:

  • Using different termination conditions (nFES, nGEN, reference value) (see example)
  • Basic statistics example (min, max, mean, median, std) (see example)
  • Storing improvements during the evolutionary cycle (see example)
  • Custom initialization of initial population (see example)

The following benchmark functions are included in NiaPy:

  • Ackley
  • Alpine
    • Alpine1
    • Alpine2
  • Bent Cigar
  • Chung Reynolds
  • Csendes
  • Discus
  • Dixon-Price
  • Elliptic
  • Griewank
  • Happy cat
  • HGBat
  • Katsuura
  • Levy
  • Michalewicz
  • Perm
  • Pintér
  • Powell
  • Qing
  • Quintic
  • Rastrigin
  • Ridge
  • Rosenbrock
  • Salomon
  • Schumer Steiglitz
  • Schwefel
    • Schwefel 2.21
    • Schwefel 2.22
  • Sphere
    • Sphere2 -> Sphere with different powers
    • Sphere3 -> Rotated hyper-ellipsoid
  • Step
    • Step2
    • Step3
  • Stepint
  • Styblinski-Tang
  • Sum Squares
  • Trid
  • Weierstrass
  • Whitley
  • Zakharov

Setup

Requirements

  • Python 3.6.x or 3.7.x (backward compatibility with 2.7.x)
  • Pip

Dependencies

  • numpy >= 1.16.2
  • scipy >= 1.2.1
  • enum34 >= 1.1.6 (if using python version < 3.4)
  • xlsxwriter >= 1.1.6
  • matplotlib >= 2.2.4

List of development dependencies and requirements can be found here.

Installation

Install NiaPy with pip:

Latest version (2.0.0rc5)

$ pip install NiaPy==2.0.0rc5

Latest stable version

$ pip install NiaPy

Install NiaPy with conda:

conda install -c niaorg niapy

or directly from the source code:

$ git clone https://github.com/NiaOrg/NiaPy.git
$ cd NiaPy
$ python setup.py install

Usage

After installation, the package can be imported:

$ python
>>> import NiaPy
>>> NiaPy.__version__

For more usage examples please look at examples folder.

More advanced examples can also be found in the NiaPy-examples repository.

Cite us

Are you using NiaPy in your project or research? Please cite us!

  • Plain format
      Vrbančič, G., Brezočnik, L., Mlakar, U., Fister, D., & Fister Jr., I. (2018).
      NiaPy: Python microframework for building nature-inspired algorithms.
      Journal of Open Source Software, 3(23), 613\. <https://doi.org/10.21105/joss.00613>
  • Bibtex format
    @article{NiaPyJOSS2018,
        author  = {Vrban{\v{c}}i{\v{c}}, Grega and Brezo{\v{c}}nik, Lucija
                  and Mlakar, Uro{\v{s}} and Fister, Du{\v{s}}an and {Fister Jr.}, Iztok},
        title   = {{NiaPy: Python microframework for building nature-inspired algorithms}},
        journal = {{Journal of Open Source Software}},
        year    = {2018},
        volume  = {3},
        issue   = {23},
        issn    = {2475-9066},
        doi     = {10.21105/joss.00613},
        url     = {https://doi.org/10.21105/joss.00613}
    }
  • RIS format
    TY  - JOUR
    T1  - NiaPy: Python microframework for building nature-inspired algorithms
    AU  - Vrbančič, Grega
    AU  - Brezočnik, Lucija
    AU  - Mlakar, Uroš
    AU  - Fister, Dušan
    AU  - Fister Jr., Iztok
    PY  - 2018
    JF  - Journal of Open Source Software
    VL  - 3
    IS  - 23
    DO  - 10.21105/joss.00613
    UR  - http://joss.theoj.org/papers/10.21105/joss.00613

Contributors ✨

Thanks goes to these wonderful people (emoji key):

Grega Vrbančič
Grega Vrbančič

💻 📖 🐛 💡 🚧 📦 📆 👀
firefly-cpp
firefly-cpp

💻 📖 🐛 💡 👀
Lucija Brezočnik
Lucija Brezočnik

💻 📖 🐛 💡
mlaky88
mlaky88

💻 📖 💡
rhododendrom
rhododendrom

💻 📖 💡 🐛 👀
Klemen
Klemen

💻 📖 💡 🐛 👀
Jan Popič
Jan Popič

💻 📖 💡
Luka Pečnik
Luka Pečnik

💻 📖 💡
Jan Banko
Jan Banko

💻 📖 💡
RokPot
RokPot

💻 📖 💡
mihaelmika
mihaelmika

💻 📖 💡
Jace Browning
Jace Browning

💻
Musa Adamu Wakili
Musa Adamu Wakili

💬
Florian Schaefer
Florian Schaefer

🤔
Jan-Hendrik Menke
Jan-Hendrik Menke

💬
brett18618
brett18618

💬

This project follows the all-contributors specification. Contributions of any kind are welcome!

Contributing

Open Source Helpers

We encourage you to contribute to NiaPy! Please check out the Contributing to NiaPy guide for guidelines about how to proceed.

Everyone interacting in NiaPy's codebases, issue trackers, chat rooms and mailing lists is expected to follow the NiaPy code of conduct.

Licence

This package is distributed under the MIT License. This license can be found online at http://www.opensource.org/licenses/MIT.

Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!