[2022 11 09] This repo was born.
[2022 11 10] Team assembled.
This code base is for the hackathon project.
- download the data from the link (https://drive.google.com/drive/folders/1kKKxA0F8Vcm3042TB-Qc_oF-RifNaYoT) and unzip everything
- unzip the data folder and all of the npy files in each subfolder and move your data to the same folder where the code is, like this:
your/path/to/cloned/github/repo/
└───data
│ └──np
│ └──train
│ └──test
│───code
│───visulisation
argparse, pytorch1.4, numpy
python run.py
--seed 1024 # random seed
--net 'moe' # calling mixture of model based UNet
--lr 0.001 # learning rate
--temp 2,0 # temperature scaling to soft the output prob
--width 8 # number of filters in the 1st conv/mlp layer
--loss_fun 'dice' # loss function between dice or ce
--train_noise 0 # 0 for no aug on train, 1 for gaussian noise on train
--test_noise 1 # 0 for no aug on test;
1 for gaussian noise sigma 0.5;
2 for gaussian noise sigma 1.0;
3 for gaussian blurr with sigma 0.5;
4 for gaussian blurr with sigma 0.7;
5 for jigsaw images;
6 for new class image
--epsilon 5 # when larger than 0, it will use gradient attack,
this is the strength of the FGSM attack
Under constructions.