- Model included in
/model/
were converted to TFJS Graph model format from the original repository
Model descriptors and signature have been additionally parsed for readability - Model itself uses dynamic input sizes
- Results parsing implementation does not follow original
and is implemented using native TFJS ops and optimized for JavaScript execution - Code also includes simple bluring function for exposed body parts in the input image
- Example implementation for NodeJS:
src/node.js
- Example implementation for Browsers:
src/index.ts
Structure of the return object:
{
input: {
file: String,
width: Number,
height: Number,
},
person: Boolean, // is person detected?
sexy: Boolean, // is person considered sexy?
nude: Boolean, // is person considered nude?
parts: Array<{ // array of detected body parts
score: Number, // confidence in detection
id: Number,
class: String, // label for body part
box: Number[], // [x, y, width, height]
}>,
}
Where class can be :
const labels = [ // class labels
'exposed anus',
'exposed armpits',
'belly',
'exposed belly',
'buttocks',
'exposed buttocks',
'female face',
'male face',
'feet',
'exposed feet',
'breast',
'exposed breast',
'vagina',
'exposed vagina',
'male breast',
'exposed male breast',
];
There are three examples:
- NodeJS Image processing:
src/node.js
- NodeJS Video processing:
src/node-video.js
this demo has additional dependencies which are not installed by default
@tensorflow/tfjs-node-gpu
andpipe2jpeg
and requires functional copy offfmpeg
- Browser:
src/index.html
written in TypeScriptsrc/index.ts
and transpiled to JavaScriptdist/index.js
node src/node.js samples/nude.jpg samples/nude-out.jpg
2021-10-20 11:11:11 INFO: nudenet version 0.0.1
2021-10-20 11:11:11 INFO: User: vlado Platform: linux Arch: x64 Node: v16.8.0
2021-10-20 11:11:11 INFO: tfjs version: 3.9.0 backend: tensorflow
2021-10-20 11:11:11 INFO: options: { debug: true, modelPath: 'file://model/model.json', minScore: 0.3, maxResults: 50, iouThreshold: 0.5, outputNodes: [ 'output1', 'output2', 'output3' ], blurNude: true, blurRadius: 25 }
2021-10-20 11:11:11 STATE: loaded graph model: file://model/model.json
2021-10-20 11:11:11 INFO: loaded image: samples/nude.jpg width: 801 height: 1112
2021-10-20 11:11:13 DATA: result: {
input: { file: 'samples/nude.jpg', width: 801, height: 1112 },
person: true,
sexy: true,
nude: true,
parts: [
{ score: 0.8839950561523438, id: 3, class: 'exposed belly', box: [ 194, 639, 244, 221 ] },
{ score: 0.7332422137260437, id: 11, class: 'exposed breast', box: [ 371, 450, 142, 154 ] },
{ score: 0.566450834274292, id: 6, class: 'female face', box: [ 282, 164, 169, 155 ] },
{ score: 0.5646520256996155, id: 11, class: 'exposed breast', box: [ 202, 430, 134, 156 ] },
{ score: 0.5579367876052856, id: 12, class: 'vagina', box: [ 187, 908, 92, 96 ] }
]
}
2021-10-20 11:11:13 STATE: created output image: samples/nude-out.jpg
2021-10-20 11:11:13 STATE: done: model:file://model/model.json input:samples/nude.jpg output:samples/nude-out.jpg objects: 5
- Original implementation: https://github.com/notAI-tech/NudeNet
- Model checkpoint: https://github.com/notAI-tech/NudeNet/releases/download/v0/detector_v2_default_checkpoint_tf.tar
tensorflowjs_converter \
--input_format tf_saved_model \
--output_format tfjs_graph_model \
--control_flow_v2=true --strip_debug_ops=true --signature_name=predict \
--weight_shard_size_bytes=16777216 --quantize_float16=* \
model/saved model/
2021-10-20 11:28:12 INFO: graph model: /home/vlado/dev/nudenet/model/model.json
2021-10-20 11:28:12 INFO: size: { numTensors: 843, numDataBuffers: 843, numBytes: 146462740 }
2021-10-20 11:28:12 DATA: inputs: [
{ name: 'images', dtype: 'DT_FLOAT', shape: [ -1, -1, -1, 3 ] },
]
2021-10-20 11:28:13 DATA: outputs: [
{ id: 0, name: 'output1', dytpe: 'DT_FLOAT', shape: [ -1, 300, 4 ] },
{ id: 1, name: 'output3', dytpe: 'DT_INT32', shape: [ -1, 300 ] },
{ id: 2, name: 'output2', dytpe: 'DT_FLOAT', shape: [ -1, 300 ] },
]