GAN for Text Summarization
Tensorflow re-implementation of Generative Adversarial Network for Abstractive Text Summarization.
Requirements
- Python3
- Tensorflow >= 1.4 (tested on Tensorflow 1.4.1)
- numpy
- tqdm
- sklearn
- rouge
- pyrouge
You can use the python package manager of your choice (pip/conda) to install the dependencies. The code is tested on Ubuntu 16.04 operating system.
Quickstart
-
Dataset
Please follow the instructions here for downloading and preprocessing the CNN/DailyMail dataset. After that, store data files
train.bin
,val.bin
,test.bin
and vocabulary filevocab
into specified data directory, e.g.,./data/
. -
Prepare negative samples for discriminator
You can download the prepared data
discriminator_train_data.npz
for discriminator from dropbox and store into specified data directory, e.g.,./data/
. -
Train the full model
python3 main.py --mode=train --data_path=./data/train.bin --vocab_path=./data/vocab --log_root=./log --pretrain_dis_data_path=./data/discriminator_train_data.npz --restore_best_model=False
-
Decode
python3 main.py --mode=decode --data_path=./data/test.bin --vocab_path=./data/vocab --log_root=./log --single_pass=True