Pinned Repositories
500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code
500 AI Machine learning Deep learning Computer vision NLP Projects with code
awesome-production-machine-learning
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning
Code-Lab-ML
Deep-Learning-1
Machine-Learning-for-Climate-Change-
Machine-Learning-from-Zero-to-Hero-Bootcamp-v1
Machine_Learning_Bootcamp
Project-Algorithm-for-a-Dog-Identification-App
Project Overview Welcome to the Convolutional Neural Networks (CNN) project in the AI Nanodegree! In this project, you will learn how to build a pipeline that can be used within a web or mobile app to process real-world, user-supplied images. Given an image of a dog, your algorithm will identify an estimate of the canine’s breed. If supplied an image of a human, the code will identify the resembling dog breed. Sample Output Along with exploring state-of-the-art CNN models for classification, you will make important design decisions about the user experience for your app. Our goal is that by completing this lab, you understand the challenges involved in piecing together a series of models designed to perform various tasks in a data processing pipeline. Each model has its strengths and weaknesses, and engineering a real-world application often involves solving many problems without a perfect answer. Your imperfect solution will nonetheless create a fun user experience! Project Instructions Instructions Clone the repository and navigate to the downloaded folder. git clone https://github.com/udacity/dog-project.git cd dog-project Download the dog dataset. Unzip the folder and place it in the repo, at location path/to/dog-project/dogImages. Download the human dataset. Unzip the folder and place it in the repo, at location path/to/dog-project/lfw. If you are using a Windows machine, you are encouraged to use 7zip to extract the folder. Download the VGG-16 bottleneck features for the dog dataset. Place it in the repo, at location path/to/dog-project/bottleneck_features. (Optional) If you plan to install TensorFlow with GPU support on your local machine, follow the guide to install the necessary NVIDIA software on your system. If you are using an EC2 GPU instance, you can skip this step. (Optional) If you are running the project on your local machine (and not using AWS), create (and activate) a new environment. Linux (to install with GPU support, change requirements/dog-linux.yml to requirements/dog-linux-gpu.yml): conda env create -f requirements/dog-linux.yml source activate dog-project Mac (to install with GPU support, change requirements/dog-mac.yml to requirements/dog-mac-gpu.yml): conda env create -f requirements/dog-mac.yml source activate dog-project NOTE: Some Mac users may need to install a different version of OpenCV conda install --channel https://conda.anaconda.org/menpo opencv3 Windows (to install with GPU support, change requirements/dog-windows.yml to requirements/dog-windows-gpu.yml): conda env create -f requirements/dog-windows.yml activate dog-project (Optional) If you are running the project on your local machine (and not using AWS) and Step 6 throws errors, try this alternative step to create your environment. Linux or Mac (to install with GPU support, change requirements/requirements.txt to requirements/requirements-gpu.txt): conda create --name dog-project python=3.5 source activate dog-project pip install -r requirements/requirements.txt NOTE: Some Mac users may need to install a different version of OpenCV conda install --channel https://conda.anaconda.org/menpo opencv3 Windows (to install with GPU support, change requirements/requirements.txt to requirements/requirements-gpu.txt): conda create --name dog-project python=3.5 activate dog-project pip install -r requirements/requirements.txt (Optional) If you are using AWS, install Tensorflow. sudo python3 -m pip install -r requirements/requirements-gpu.txt Switch Keras backend to TensorFlow. Linux or Mac: KERAS_BACKEND=tensorflow python -c "from keras import backend" Windows: set KERAS_BACKEND=tensorflow python -c "from keras import backend" (Optional) If you are running the project on your local machine (and not using AWS), create an IPython kernel for the dog-project environment. python -m ipykernel install --user --name dog-project --display-name "dog-project" Open the notebook. jupyter notebook dog_app.ipynb (Optional) If you are running the project on your local machine (and not using AWS), before running code, change the kernel to match the dog-project environment by using the drop-down menu (Kernel > Change kernel > dog-project). Then, follow the instructions in the notebook. NOTE: While some code has already been implemented to get you started, you will need to implement additional functionality to successfully answer all of the questions included in the notebook. Unless requested, do not modify code that has already been included. Evaluation Your project will be reviewed by a Udacity reviewer against the CNN project rubric. Review this rubric thoroughly, and self-evaluate your project before submission. All criteria found in the rubric must meet specifications for you to pass. Project Submission When you are ready to submit your project, collect the following files and compress them into a single archive for upload: The dog_app.ipynb file with fully functional code, all code cells executed and displaying output, and all questions answered. An HTML or PDF export of the project notebook with the name report.html or report.pdf. Any additional images used for the project that were not supplied to you for the project. Please do not include the project data sets in the dogImages/ or lfw/ folders. Likewise, please do not include the bottleneck_features/ folder.
pyloss
the-khana
mthd98's Repositories
mthd98/Machine-Learning-from-Zero-to-Hero-Bootcamp-v1
mthd98/Project-Algorithm-for-a-Dog-Identification-App
Project Overview Welcome to the Convolutional Neural Networks (CNN) project in the AI Nanodegree! In this project, you will learn how to build a pipeline that can be used within a web or mobile app to process real-world, user-supplied images. Given an image of a dog, your algorithm will identify an estimate of the canine’s breed. If supplied an image of a human, the code will identify the resembling dog breed. Sample Output Along with exploring state-of-the-art CNN models for classification, you will make important design decisions about the user experience for your app. Our goal is that by completing this lab, you understand the challenges involved in piecing together a series of models designed to perform various tasks in a data processing pipeline. Each model has its strengths and weaknesses, and engineering a real-world application often involves solving many problems without a perfect answer. Your imperfect solution will nonetheless create a fun user experience! Project Instructions Instructions Clone the repository and navigate to the downloaded folder. git clone https://github.com/udacity/dog-project.git cd dog-project Download the dog dataset. Unzip the folder and place it in the repo, at location path/to/dog-project/dogImages. Download the human dataset. Unzip the folder and place it in the repo, at location path/to/dog-project/lfw. If you are using a Windows machine, you are encouraged to use 7zip to extract the folder. Download the VGG-16 bottleneck features for the dog dataset. Place it in the repo, at location path/to/dog-project/bottleneck_features. (Optional) If you plan to install TensorFlow with GPU support on your local machine, follow the guide to install the necessary NVIDIA software on your system. If you are using an EC2 GPU instance, you can skip this step. (Optional) If you are running the project on your local machine (and not using AWS), create (and activate) a new environment. Linux (to install with GPU support, change requirements/dog-linux.yml to requirements/dog-linux-gpu.yml): conda env create -f requirements/dog-linux.yml source activate dog-project Mac (to install with GPU support, change requirements/dog-mac.yml to requirements/dog-mac-gpu.yml): conda env create -f requirements/dog-mac.yml source activate dog-project NOTE: Some Mac users may need to install a different version of OpenCV conda install --channel https://conda.anaconda.org/menpo opencv3 Windows (to install with GPU support, change requirements/dog-windows.yml to requirements/dog-windows-gpu.yml): conda env create -f requirements/dog-windows.yml activate dog-project (Optional) If you are running the project on your local machine (and not using AWS) and Step 6 throws errors, try this alternative step to create your environment. Linux or Mac (to install with GPU support, change requirements/requirements.txt to requirements/requirements-gpu.txt): conda create --name dog-project python=3.5 source activate dog-project pip install -r requirements/requirements.txt NOTE: Some Mac users may need to install a different version of OpenCV conda install --channel https://conda.anaconda.org/menpo opencv3 Windows (to install with GPU support, change requirements/requirements.txt to requirements/requirements-gpu.txt): conda create --name dog-project python=3.5 activate dog-project pip install -r requirements/requirements.txt (Optional) If you are using AWS, install Tensorflow. sudo python3 -m pip install -r requirements/requirements-gpu.txt Switch Keras backend to TensorFlow. Linux or Mac: KERAS_BACKEND=tensorflow python -c "from keras import backend" Windows: set KERAS_BACKEND=tensorflow python -c "from keras import backend" (Optional) If you are running the project on your local machine (and not using AWS), create an IPython kernel for the dog-project environment. python -m ipykernel install --user --name dog-project --display-name "dog-project" Open the notebook. jupyter notebook dog_app.ipynb (Optional) If you are running the project on your local machine (and not using AWS), before running code, change the kernel to match the dog-project environment by using the drop-down menu (Kernel > Change kernel > dog-project). Then, follow the instructions in the notebook. NOTE: While some code has already been implemented to get you started, you will need to implement additional functionality to successfully answer all of the questions included in the notebook. Unless requested, do not modify code that has already been included. Evaluation Your project will be reviewed by a Udacity reviewer against the CNN project rubric. Review this rubric thoroughly, and self-evaluate your project before submission. All criteria found in the rubric must meet specifications for you to pass. Project Submission When you are ready to submit your project, collect the following files and compress them into a single archive for upload: The dog_app.ipynb file with fully functional code, all code cells executed and displaying output, and all questions answered. An HTML or PDF export of the project notebook with the name report.html or report.pdf. Any additional images used for the project that were not supplied to you for the project. Please do not include the project data sets in the dogImages/ or lfw/ folders. Likewise, please do not include the bottleneck_features/ folder.
mthd98/Machine_Learning_Bootcamp
mthd98/Machine-Learning-for-Climate-Change-
mthd98/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code
500 AI Machine learning Deep learning Computer vision NLP Projects with code
mthd98/awesome-production-machine-learning
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning
mthd98/Data-Science
mthd98/face_generation
mthd98/Machine_Learning_Bootcamps
mthd98/nanoGPT
The simplest, fastest repository for training/finetuning medium-sized GPTs.
mthd98/openai-cookbook
Examples and guides for using the OpenAI API
mthd98/Workshops
mthd98/AI-for-Climate-Change
a collection of Jupyter notebooks and associated code that covers the fundamental concepts of deep learning and its application to climate change problems. This repository contains a range of materials to help you understand the basics of deep learning and its practical implementation using TensorFlow.
mthd98/awesome-mlops
A curated list of references for MLOps
mthd98/ControlNet
Let us control diffusion models!
mthd98/education-toolkit
Educational materials for universities
mthd98/fsdl-text-recognizer-project
Lab materials for the Full Stack Deep Learning Course
mthd98/gpt-neox
An implementation of model parallel autoregressive transformers on GPUs, based on the DeepSpeed library.
mthd98/gradio
Create UIs for your machine learning model in Python in 3 minutes
mthd98/Knowledge_distillation_via_TF2.0
The codes for recent knowledge distillation algorithms and benchmark results via TF2.0 low-level API
mthd98/lime
Lime: Explaining the predictions of any machine learning classifier
mthd98/LLM101n
LLM101n: Let's build a Storyteller
mthd98/Machine_Learning_for_Climate_Change
mthd98/ML-YouTube-Courses
📺 A place to discover the latest machine learning courses on YouTube.
mthd98/RxPY
ReactiveX for Python
mthd98/stable-diffusion-webui
Stable Diffusion web UI
mthd98/tf-explain
Interpretability Methods for tf.keras models with Tensorflow 2.x
mthd98/The-Python-Graph-Gallery
A website displaying hundreds of charts made with Python
mthd98/Transformer_Implementation
mthd98/youtube-dl
Command-line program to download videos from YouTube.com and other video sites