/dataset-tools

Tools for quickly normalizing image datasets

Primary LanguagePython

dataset-tools

Tools for quickly normalizing image datasets for machine learning.

Installation

git clone https://github.com/dvschultz/dataset-tools.git
cd dataset-tools
pip install -r requirements.txt

Basic Usage

python dataset-tools.py --input_folder path/to/input/ --output_folder path/to/output/

All Options

dataset_tools.py

  • --verbose: Print progress to console.
  • --input_folder: Directory path to the inputs folder. Default: ./input/
  • --output_folder: Directory path to the outputs folder. Default: ./output/
  • --process_type: Process to use. Options: resize,square,crop,crop_to_square,canny,canny-pix2pix,scale,crop_to_square_patch,many_squares Default: resize
  • --blur_type: Blur process to use. Use with --process_type canny. Options: none, gaussian, median. Default: none
  • --blur_amount: Amount of blur to apply (use odd integers only). Use with --blur_type. Default: 1
  • --max_size: Maximum width or height of the output images. Default: 512
  • --direction: Paired Direction. For use with pix2pix process. Options: AtoB,BtoA. Default: AtoB
  • --mirror: Adds mirror augmentation.
  • --rotate: Adds 90 degree rotation augmentation.
  • --border_type: Border style to use when using the square process type Options: stretch,reflect,solid (solid requires --border-color) Default: stretch
  • --border_color: border color to use with the solid border type; use BGR values from 0 to 255 Example: 255,0,0 is blue
  • --height: height of crop in pixels; use with --process_type crop
  • --width: width of crop in pixels; use with --process_type crop
  • --shift_y: y (Top to bottom) amount to shift in pixels; negative values will move it up, positive will move it down; use with --process_type crop
  • --shift_x: x (Left to right) amount to shift in pixels; negative values will move it left, positive will move it right; use with --process_type crop
  • --file_extension: file format to output Options: jpg,png Default: png

sort.py

  • --file_extension: file format to output Options: jpg,png Default: png
  • --verbose: Print progress to console.
  • --input_folder: Directory path to the inputs folder. Default: ./input/
  • --output_folder: Directory path to the outputs folder. Default: ./output/
  • --process_type: Process to use. Options: sort,exclude Default: exclude
  • --max_size: Maximum width or height of the output images. Default: 2048
  • --min_size: Minimum width or height of the output images. Default: 1024
  • --min_ratio: Ratio of image (height/width). Default: 1.0
  • --exact: Match to exact specs. Use --min_size for shorter dimension, --max_size for longer dimension

dedupe.py

Remove duplicate images from your dataset

  • --absolute: Use absolute matching. Default
  • --avg_match: average pixel difference between images (use with --relative) Default: 1.0
  • --file_extension: file format to output Options: jpg,png Default: png
  • --input_folder: Directory path to the inputs folder. Default: ./input/
  • --output_folder: Directory path to the outputs folder. Default: ./output/
  • --relative: Use relative matching.
  • --verbose: Print progress to console.

Basic usage (absolute)

python dedupe.py --input_folder path/to/input/ --output_folder path/to/output/

Basic usage (relative)

python dedupe.py --input_folder path/to/input/ --output_folder path/to/output/ --relative

rotate.py