Official PyTorch code for the NeurIPS 2020 spotlight paper "Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies". In this paper, we propose a novel graph-based deep metric learning loss, namely ProxyGML, which is simple to implement. The pipeline of ProxyGML is as shown below.
Slides of our NeurIPS 2020 spotlight talk are available here. Each page of the slides contains comments, which we assume can be of help to better understand our work. Our poster is also available here. Feel free to use our slides if you want to share our work in your group meeting or introduce it to your friends!
We recommend the following dependencies.
- pytorch==1.2
- pillow==5.2.0
- tqdm==4.26.0
- matplotlib==2.2.2
- pandas==0.23.4
- scipy==1.2.1
- scikit-learn==0.20.3
- scikit-image==0.14.2
- h5py==2.9.0
-
Download three public benchmarks for deep metric learning
- CUB-200-2011
- Cars-196 (Img, Annotation)
- Stanford Online Products (Link)
-
All datasets are preprocessed as follows ( take CUB200-2011 for example) and stored in .\data
cub200
└───train
| └───0
| │ xxx.jpg
| │ ...
|
| ...
|
| └───99
| │ xxx.jpg
| │ ...
└───test
| └───100
| │ xxx.jpg
| │ ...
|
| ...
|
| └───199
| │ xxx.jpg
| │ ...
| ...
Note that a fine-grained combination of parameter
python train.py -b 32 --gpu 2 --dataset cub200 --freeze_BN --epochs 50 --dim 512 --r 0.05 -C 100 --N 12 --weight_lambda 0.3 --centerlr 0.03 --rate 0.1 --new_epoch_to_decay 20 40
python train.py -b 32 --gpu 2 --dataset cars196 --freeze_BN --epochs 50 --dim 512 --r 0.05 -C 98 --N 12 --weight_lambda 0.3 --centerlr 0.03 --rate 0.1 --new_epoch_to_decay 20 40
python train.py -b 32 --gpu 2 --dataset online_products --epochs 50 --dim 512 --r 0.05 -C 11318 --N 1 --weight_lambda 0.0 --centerlr 0.3 --rate 0.1 --new_epoch_to_decay 20 40
If you find our paper or this project helps your research, please kindly consider citing our work via:
@inproceedings{Zhu2020ProxyGML,
title={Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies},
author={Yuehua Zhu and Muli Yang and Cheng Deng and Wei Liu},
booktitle={NeurIPS},
year={2020}
}