To write a program to implement the the Logistic Regression Model to Predict the Placement Status of Student.
- Hardware – PCs
- Anaconda – Python 3.7 Installation / Jupyter notebook
- Import the standard libraries.
- Upload the dataset and check for any null or duplicated values using .isnull() and .duplicated() function respectively.
- Import LabelEncoder and encode the dataset.
- Import LogisticRegression from sklearn and apply the model on the dataset.
- Predict the values of array.
- Calculate the accuracy, confusion and classification report by importing the required modules from sklearn.
- Apply new unknown values.
/*
Program to implement the the Logistic Regression Model to Predict the Placement Status of Student.
Developed by: NANDAN.S
RegisterNumber: 212220040096
*/
import pandas as pd
data = pd.read_csv("Placement_Data.csv")
data.head()
data1 = data.copy()
data1 = data1.drop(["sl_no","salary"],axis = 1)
data1.head()
data1.isnull().sum()
data1.duplicated().sum()
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
data1["gender"] = le.fit_transform(data1["gender"])
data1["ssc_b"] = le.fit_transform(data1["ssc_b"])
data1["hsc_b"] = le.fit_transform(data1["hsc_b"])
data1["hsc_s"] = le.fit_transform(data1["hsc_s"])
data1["degree_t"] = le.fit_transform(data1["degree_t"])
data1["workex"] = le.fit_transform(data1["workex"])
data1["specialisation"] = le.fit_transform(data1["specialisation"])
data1["status"] = le.fit_transform(data1["status"])
data1
x = data1.iloc[:,:-1]
x
y = data1["status"]
y
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2,random_state = 0)
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(solver = "liblinear")
lr.fit(x_train,y_train)
y_pred = lr.predict(x_test)
y_pred
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test,y_pred)
accuracy
from sklearn.metrics import confusion_matrix
confusion = confusion_matrix(y_test,y_pred)
confusion
from sklearn.metrics import classification_report
classification_report1 = classification_report(y_test,y_pred)
classification_report1
lr.predict([[1,80,1,90,1,1,90,1,0,85,1,85]])
1.Placement data
2.Salary data
3.Checking the null() function
- Data Duplicate
- Print data
- Data-status
- y_prediction array
8.Accuracy value
- Confusion array
- Classification report
11.Prediction of LR
Thus the program to implement the the Logistic Regression Model to Predict the Placement Status of Student is written and verified using python programming.