This repository provides the code for "AEPL: Automated and Editable Prompt Learning for Brain Tumor Segmentation".
Some important required packages include:
- Pytorch version >=0.4.1.
- Python == 3.7
- Some basic python packages such as Numpy.
- nnUNetv1
- Follow official guidance to install Pytorch.
- Follow official guidance to install nnUNetv1.
You experiment on BraTS2018.
python ./preprocess/BraTS.py
python ./preprocess/generate_json.py
nnUNet_plan_and_preprocess -t 501 --verify_dataset_integrity
CUDA_VISIBLE_DEVICES=0 nnUNet_train 3d_fullres nnUNetTrainerV2_AEPL 501 0
CUDA_VISIBLE_DEVICES=0 nnUNet_predict -i /nnUNet/nnUNet_raw/nnUNet_raw_data/Task501_BraTS/imagesTs/ -o /nnUNet/nnUNet_output/Task501_BraTS/nnUNetTrainerV2_AEPL/fold_0 -t 501 -m 3d_fullres -f 0 -tr nnUNetTrainerV2_AEPL