/TensorRT-Alpha20231008

🔥🔥🔥TensorRT-Alpha supports YOLOv8、YOLOv7、YOLOv6、YOLOv5、YOLOv4、v3、YOLOX、YOLOR...🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎It also supports end2end CUDA C acceleration and multi-batch inference.

Primary LanguageC++GNU General Public License v2.0GPL-2.0

TensorRT-Alpha

Cuda

English | 简体中文


Visualization



Introduce

This repository provides accelerated deployment cases of deep learning CV popular models, and cuda c supports dynamic-batch image process, infer, decode, NMS.
There are two ways to compile model(pth or onnx):

pth -> trt coming soon.
pth -> onnx -> trt:
  • [i]. According to the network disk provided by TensorRT-Alpha, download ONNX directly. weiyun or google driver
  • [ii]]. Follow the instructions provided by TensorRT-Alpha to manually export ONNX from the relevant python source code framework.

Update

  • 2023.01.01 🔥 update yolov3, yolov4, yolov5, yolov6
  • 2023.01.04 🍅 update yolov7, yolox, yolor
  • 2023.01.05 🎉 update u2net, libfacedetection
  • 2023.01.08 🚀 The whole network is the first to support yolov8
  • 2023.01.20 update efficientdet, pphunmanseg

Installation

The following environments have been tested:

Ubuntu18.04
  • cuda11.3
  • cudnn8.2.0
  • gcc7.5.0
  • tensorrt8.4.2.4
  • opencv3.x or 4.x
  • cmake3.10.2
Windows10
  • cuda11.3
  • cudnn8.2.0
  • visual studio 2017 or 2019 or 2022
  • tensorrt8.4.2.4
  • opencv3.x or 4.x
Python environment(Optional)
# install miniconda first
conda create -n tensorrt-alpha python==3.8 -y
conda activate tensorrt-alpha
git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha
pip install -r requirements.txt  

Installation Tutorial:

Quick Start

Ubuntu18.04

set your TensorRT_ROOT path:

git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/cmake
vim common.cmake
# set var TensorRT_ROOT to your path in line 20, eg:
# set(TensorRT_ROOT /root/TensorRT-8.4.2.4)

start to build project: For example:yolov8

Windows10

图文详细版:Windows10环境配置

Onnx

At present, more than 30 models have been implemented, and some onnx files of them are organized as follows:

model tesla v100(32G) weiyun google driver
yolov3 weiyun google driver
yolov4 weiyun google driver
yolov5 weiyun google driver
yolov6 weiyun google driver
yolov7 weiyun google driver
yolov8 weiyun google driver
yolox weiyun google driver
yolor weiyun google driver
u2net weiyun google driver
libfacedetection weiyun google driver
facemesh weiyun google driver
pphumanseg weiyun google driver
efficientdet weiyun google driver
more...(🚀: I will be back soon!)

🍉We will test the time of all models on tesla v100 and A100! Now let's preview the performance of yolov8n on RTX2070m(8G):

model video resolution model input size GPU Memory-Usage GPU-Util
yolov8n 1920x1080 8x3x640x640 1093MiB/7982MiB 14%
无法显示图片时显示的文字
cost time per frame

Some Precision Alignment Renderings Comparison


无法显示图片时显示的文字
yolov8n : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
yolov7-tiny : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
yolov6s : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
yolov5s : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
yolov5s : Offical( left ) vs Ours( right )

无法显示图片时显示的文字
libfacedetection : Offical( left ) vs Ours( right topK:2000)

Reference

[0].https://github.com/NVIDIA/TensorRT
[1].https://github.com/onnx/onnx-tensorrt
[2].https://github.com/NVIDIA-AI-IOT/torch2trt
[3].https://github.com/shouxieai/tensorRT_Pro
[4].https://github.com/opencv/opencv_zoo

Citation

@misc{FeiYull_TensorRT-Alpha,  
  author = {FeiYull},  
  title = {TensorRT-Alpha},  
  year = {2023},  
  publisher = {GitHub},  
  journal = {GitHub repository},  
  howpublished = {https://github.com/FeiYull/tensorrt-alpha}
}