This example illustrates how to use the efficient sub-pixel convolution layer described in "Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network" - Shi et al. for increasing spatial resolution within your network for tasks such as superresolution.
usage: main.py [-h] --upscale_factor UPSCALE_FACTOR [--batchSize BATCHSIZE]
[--testBatchSize TESTBATCHSIZE] [--nEpochs NEPOCHS] [--lr LR]
[--cuda] [--threads THREADS] [--seed SEED] [--resume RESUME]
PyTorch Super Res Example
optional arguments:
-h, --help show this help message and exit
--upscale_factor super resolution upscale factor
--batchSize training batch size
--testBatchSize testing batch size
--nEpochs number of epochs to train for
--lr Learning Rate. Default=0.01
--cuda use cuda
--threads number of threads for data loader to use Default=4
--seed random seed to use. Default=123
--resume resume from checkpoint
Training on BSD300 dataset
Put root_dir = download_bsd300() in data.py file
* Put root_dir = document_dataset() in data.py file
* Use the following folder structure:
dataset
|
--- document
|
--- images
|
--- test
|
--- train
python main.py --upscale_factor 3 --batchSize 4 --testBatchSize 100 --nEpochs 30 --lr 0.001
python super_resolve.py --input_image dataset/BSDS300/images/test/16077.jpg --model model_epoch_500.pth --output_filename out.png
provide path with --resume arguement
Use the script scrape_google_search_images.py
to scrape HD images from Google search results
usage: scrape_google_search_images.py [--search SEARCH] [--num_images NUM_IMAGES] [--directory DIRECTORY]
Scrape Google images
arguments:
--search search term
--num_images number of images to save
--directory directory path to save results
Point to Note: Script scrape_google_search_images.py
works well with Python 2.x version.