Question 1 : Fizz Buzz
Given an integer n
, return a string array answer
(1-indexed) where:
answer[i] == "FizzBuzz"
ifi
is divisible by3
and5
.answer[i] == "Fizz"
ifi
is divisible by3
.answer[i] == "Buzz"
ifi
is divisible by5
.answer[i] == i
(as a string) if none of the above conditions are true.
Example 1:
Input: n = 3
Output: ["1","2","Fizz"]
Example 2:
Input: n = 5
Output: ["1","2","Fizz","4","Buzz"]
Example 3:
Input: n = 15
Output: ["1","2","Fizz","4","Buzz","Fizz","7","8","Fizz","Buzz","11","Fizz","13","14","FizzBuzz"]
Constraints:
1 <= n <= 104
def fizzBuzz(self, n: int) -> List[str]:
return ["FizzBuzz" if i % 3 == 0 and i % 5 == 0 else "Fizz" if i % 3 == 0 else "Buzz" if i % 5 == 0 else str(i) for
i in range(1, n + 1)]
Question 2 : Two Sum
Given an array of integers nums
and an integer target
, return indices of the two numbers such that they add up
to target
.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
You can return the answer in any order.
Example 1:
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
Constraints:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
- Only one valid answer exists.
Follow-up: Can you come up with an algorithm that is less than O(n2)
time complexity?
def twoSum(self, nums: List[int], target: int) -> List[int]:
prevMap = {} # val -> index
for i, n in enumerate(nums):
diff = target - n
if diff in prevMap:
return [prevMap[diff], i]
prevMap[n] = i
Question 3 : Valid Anagram
Given two strings s
and t
, return true
if t
is an anagram of s
, and false
otherwise.
Example 1:
Input: s = "anagram", t = "nagaram"
Output: true
Example 2:
Input: s = "rat", t = "car"
Output: false
Constraints:
1 <= s.length, t.length <= 5 * 104
s
andt
consist of lowercase English letters.
Follow up: What if the inputs contain Unicode characters? How would you adapt your solution to such a case?
def isAnagram(self, s: str, t: str) -> bool:
if len(s) != len(t):
return False
countS, countT = {}, {}
for i in range(len(s)):
countS[s[i]] = 1 + countS.get(s[i], 0)
countT[t[i]] = 1 + countT.get(t[i], 0)
return countS == countT
# easier solution
# return True if sorted(s) == sorted(t) else False
Question 4 : Reverse String
Write a function that reverses a string. The input string is given as an array of characters s
.
You must do this by modifying the input array in-place with O(1)
extra memory.
Example 1:
Input: s = ["h","e","l","l","o"]
Output: ["o","l","l","e","h"]
Example 2:
Input: s = ["H","a","n","n","a","h"]
Output: ["h","a","n","n","a","H"]
Constraints:
1 <= s.length <= 105
s[i]
is a printable ascii character.
def reverseString(self, s: List[str]) -> None:
left, right = 0, len(s) - 1
while left < right:
s[left], s[right] = s[right], s[left]
left, right = left + 1, right - 1
Question 5 : Valid Palindrome
A phrase is a palindrome if, after converting all uppercase letters into lowercase letters and removing all non-alphanumeric characters, it reads the same forward and backward. Alphanumeric characters include letters and numbers.
Given a string s
, return true
if it is a palindrome, or false
otherwise.
Example 1:
Input: s = "A man, a plan, a canal: Panama"
Output: true
Explanation: "amanaplanacanalpanama" is a palindrome.
Example 2:
Input: s = "race a car"
Output: false
Explanation: "raceacar" is not a palindrome.
Example 3:
Input: s = " "
Output: true
Explanation: s is an empty string "" after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
Constraints:
1 <= s.length <= 2 * 105
s
consists only of printable ASCII characters.
def isPalindrome(self, s: str) -> bool:
s = ''.join(filter(str.isalnum, s)).lower()
return s == s[::-1]
Question 6 : Longest Common Prefix
Write a function to find the longest common prefix string amongst an array of strings.
If there is no common prefix, return an empty string ""
.
Example 1:
Input: strs = ["flower","flow","flight"]
Output: "fl"
Example 2:
Input: strs = ["dog","racecar","car"]
Output: ""
Explanation: There is no common prefix among the input strings.
Constraints:
1 <= strs.length <= 200
0 <= strs[i].length <= 200
strs[i]
consists of only lowercase English letters.
def longestCommonPrefix(self, strs: List[str]) -> str:
if not strs:
return ""
for i in range(len(strs[0])):
for string in strs[1:]:
if i >= len(string) or string[i] != strs[0][i]:
return strs[0][:i]
return strs[0]
Question 7 : Power of Three
Given an integer n
, return true
if it is a power of three. Otherwise, return false
.
An integer n
is a power of three, if there exists an integer x
such that n == 3x
.
Example 1:
Input: n = 27
Output: true
Explanation: 27 = 33
Example 2:
Input: n = 0
Output: false
Explanation: There is no x where 3x = 0.
Example 3:
Input: n = -1
Output: false
Explanation: There is no x where 3x = (-1).
Constraints:
-231 <= n <= 231 - 1
Follow up: Could you solve it without loops/recursion?
def isPowerOfThree(self, n: int) -> bool:
return n > 0 and 1162261467 % n == 0
bool isPowerOfThree(int n) {
return n > 0 && 1162261467 % n == 0;
}
Question 8 : Number of 1 Bits
Write a function that takes the binary representation of a positive integer and returns the number of set bits it has ( also known as the Hamming weight).
Example 1:
Input: n = 11
Output: 3
Explanation:
The input binary string 1011 has a total of three set bits.
Example 2:
Input: n = 128
Output: 1
Explanation:
The input binary string 10000000 has a total of one set bit.
Example 3:
Input: n = 2147483645
Output: 30
Explanation:
The input binary string 1111111111111111111111111111101 has a total of thirty set bits.
Constraints:
1 <= n <= 231 - 1
Follow up: If this function is called many times, how would you optimize it?
def hammingWeight(self, n: int) -> int:
count = 0
while n:
n &= n - 1
count += 1
return count
int hammingWeight(uint32_t n) {
int count = 0;
while (n) {
n &= n - 1;
count++;
}
return count;
}
Question 9 : Range Sum Query - Immutable
Given an integer array nums
, handle multiple queries of the following type:
- Calculate the sum of the elements of
nums
between indicesleft
andright
inclusive whereleft <= right
.
Implement the NumArray
class:
NumArray(int[] nums)
Initializes the object with the integer arraynums
.int sumRange(int left, int right)
Returns the sum of the elements ofnums
between indicesleft
andright
* inclusive* (i.e.nums[left] + nums[left + 1] + ... + nums[right]
).
Example 1:
Input
["NumArray", "sumRange", "sumRange", "sumRange"]
[[[-2, 0, 3, -5, 2, -1]], [0, 2], [2, 5], [0, 5]]
Output
[null, 1, -1, -3]
Explanation
NumArray numArray = new NumArray([-2, 0, 3, -5, 2, -1]);
numArray.sumRange(0, 2); // return (-2) + 0 + 3 = 1
numArray.sumRange(2, 5); // return 3 + (-5) + 2 + (-1) = -1
numArray.sumRange(0, 5); // return (-2) + 0 + 3 + (-5) + 2 + (-1) = -3
Constraints:
1 <= nums.length <= 104
-105 <= nums[i] <= 105
0 <= left <= right < nums.length
- At most
104
calls will be made tosumRange
.
Question 10 : Fibonacci Number
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each
number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n
, calculate F(n)
.
Example 1:
Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
0 <= n <= 30
Question 11 : Climbing Stairs
You are climbing a staircase. It takes n
steps to reach the top.
Each time you can either climb 1
or 2
steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
Constraints:
1 <= n <= 45
Question 12 : Min Cost Climbing Stairs
You are given an integer array cost
where cost[i]
is the cost of ith
step on a staircase. Once you pay the cost,
you can either climb one or two steps.
You can either start from the step with index 0
, or the step with index 1
.
Return the minimum cost to reach the top of the floor.
Example 1:
Input: cost = [10,15,20]
Output: 15
Explanation: You will start at index 1.
- Pay 15 and climb two steps to reach the top.
The total cost is 15.
Example 2:
Input: cost = [1,100,1,1,1,100,1,1,100,1]
Output: 6
Explanation: You will start at index 0.
- Pay 1 and climb two steps to reach index 2.
- Pay 1 and climb two steps to reach index 4.
- Pay 1 and climb two steps to reach index 6.
- Pay 1 and climb one step to reach index 7.
- Pay 1 and climb two steps to reach index 9.
- Pay 1 and climb one step to reach the top.
The total cost is 6.
Constraints:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
Question 13 : Best Time to Buy and Sell Stock
You are given an array prices
where prices[i]
is the price of a given stock on the ith
day.
You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.
Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0
.
Example 1:
Input: prices = [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
Example 2:
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transactions are done and the max profit = 0.
Constraints:
1 <= prices.length <= 105
0 <= prices[i] <= 104
Question 14 : Binary Tree Inorder Traversal
Given the root
of a binary tree, return the inorder traversal of its nodes' values.
Example 1:
Input: root = [1,null,2,3]
Output: [1,3,2]
Explanation:
Example 2:
Input: root = [1,2,3,4,5,null,8,null,null,6,7,9]
Output: [4,2,6,5,7,1,3,9,8]
Explanation:
Example 3:
Input: root = []
Output: []
Example 4:
Input: root = [1]
Output: [1]
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Follow up: Recursive solution is trivial, could you do it iteratively?
Question 15 : Invert Binary Tree
Given the root
of a binary tree, invert the tree, and return its root.
Example 1:
Input: root = [4,2,7,1,3,6,9]
Output: [4,7,2,9,6,3,1]
Example 2:
Input: root = [2,1,3]
Output: [2,3,1]
Example 3:
Input: root = []
Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 100]
. -100 <= Node.val <= 100
Question 16 : Symmetric Tree
Given the root
of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).
Example 1:
Input: root = [1,2,2,3,4,4,3]
Output: true
Example 2:
Input: root = [1,2,2,null,3,null,3]
Output: false
Constraints:
- The number of nodes in the tree is in the range
[1, 1000]
. -100 <= Node.val <= 100
Follow up: Could you solve it both recursively and iteratively?
Question 17 : Maximum Depth of Binary Tree
Given the root
of a binary tree, return its maximum depth.
A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: 3
Example 2:
Input: root = [1,null,2]
Output: 2
Constraints:
- The number of nodes in the tree is in the range
[0, 104]
. -100 <= Node.val <= 100
Question 18 : Same Tree
Given the roots of two binary trees p
and q
, write a function to check if they are the same or not.
Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.
Example 1:
Input: p = [1,2,3], q = [1,2,3]
Output: true
Example 2:
Input: p = [1,2], q = [1,null,2]
Output: false
Example 3:
Input: p = [1,2,1], q = [1,1,2]
Output: false
Constraints:
- The number of nodes in both trees is in the range
[0, 100]
. -104 <= Node.val <= 104
Question 19 : Path Sum
Given the root
of a binary tree and an integer targetSum
, return true
if the tree has a root-to-leaf path
such that adding up all the values along the path equals targetSum
.
A leaf is a node with no children.
Example 1:
Input: root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
Output: true
Explanation: The root-to-leaf path with the target sum is shown.
Example 2:
Input: root = [1,2,3], targetSum = 5
Output: false
Explanation: There two root-to-leaf paths in the tree:
(1 --> 2): The sum is 3.
(1 --> 3): The sum is 4.
There is no root-to-leaf path with sum = 5.
Example 3:
Input: root = [], targetSum = 0
Output: false
Explanation: Since the tree is empty, there are no root-to-leaf paths.
Constraints:
- The number of nodes in the tree is in the range
[0, 5000]
. -1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
Question 20 : Minimum Depth of Binary Tree
Given a binary tree, find its minimum depth.
The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
Note: A leaf is a node with no children.
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: 2
Example 2:
Input: root = [2,null,3,null,4,null,5,null,6]
Output: 5
Constraints:
- The number of nodes in the tree is in the range
[0, 105]
. -1000 <= Node.val <= 1000
Question 21 : Validate Binary Search Tree
Given the root
of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [2,1,3]
Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -231 <= Node.val <= 231 - 1
Question 22 : Reverse Linked List
Given the head
of a singly linked list, reverse the list, and return the reversed list.
Example 1:
Input: head = [1,2,3,4,5]
Output: [5,4,3,2,1]
Example 2:
Input: head = [1,2]
Output: [2,1]
Example 3:
Input: head = []
Output: []
Constraints:
- The number of nodes in the list is the range
[0, 5000]
. -5000 <= Node.val <= 5000
Follow up: A linked list can be reversed either iteratively or recursively. Could you implement both?
Question 23 : Middle of the Linked List
Given the head
of a singly linked list, return the middle node of the linked list.
If there are two middle nodes, return the second middle node.
Example 1:
Input: head = [1,2,3,4,5]
Output: [3,4,5]
Explanation: The middle node of the list is node 3.
Example 2:
Input: head = [1,2,3,4,5,6]
Output: [4,5,6]
Explanation: Since the list has two middle nodes with values 3 and 4, we return the second one.
Constraints:
- The number of nodes in the list is in the range
[1, 100]
. 1 <= Node.val <= 100
Question 24 : Binary Tree Level Order Traversal
Given the root
of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right,
level by level).
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]
Example 2:
Input: root = [1]
Output: [[1]]
Example 3:
Input: root = []
Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 2000]
. -1000 <= Node.val <= 1000
Question 25 : Find if Path Exists in Graph
There is a bi-directional graph with n
vertices, where each vertex is labeled from 0
to n - 1
(**inclusive
**). The edges in the graph are represented as a 2D integer array edges
, where each edges[i] = [ui, vi]
denotes a
bi-directional edge between vertex ui
and vertex vi
. Every vertex pair is connected by at most one edge, and no
vertex has an edge to itself.
You want to determine if there is a valid path that exists from vertex source
to vertex destination
.
Given edges
and the integers n
, source
, and destination
, return true
if there is a valid path
from source
to destination
, or false
otherwise*.*
Example 1:
Input: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2
Output: true
Explanation: There are two paths from vertex 0 to vertex 2:
- 0 → 1 → 2
- 0 → 2
Example 2:
Input: n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5
Output: false
Explanation: There is no path from vertex 0 to vertex 5.
Constraints:
1 <= n <= 2 * 105
0 <= edges.length <= 2 * 105
edges[i].length == 2
0 <= ui, vi <= n - 1
ui != vi
0 <= source, destination <= n - 1
- There are no duplicate edges.
- There are no self edges.
Question 26 : Number of Islands
Given an m x n
2D binary grid grid
which represents a map of '1'
s (land) and '0'
s (water), return the number of
islands.
An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
Example 1:
Input: grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
Output: 1
Example 2:
Input: grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
Output: 3
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j]
is'0'
or'1'
.
Question 27 : Max Area of Island
You are given an m x n
binary matrix grid
. An island is a group of 1
's (representing land) connected *
4-directionally* (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water.
The area of an island is the number of cells with a value 1
in the island.
Return the maximum area of an island in grid
. If there is no island, return 0
.
Example 1:
Input: grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
Output: 6
Explanation: The answer is not 11, because the island must be connected 4-directionally.
Example 2:
Input: grid = [[0,0,0,0,0,0,0,0]]
Output: 0
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 50
grid[i][j]
is either0
or1
.
Question 28 : Count Sub Islands
You are given two m x n
binary matrices grid1
and grid2
containing only 0
's (representing water) and 1
's (
representing land). An island is a group of 1
's connected 4-directionally (horizontal or vertical). Any cells
outside of the grid are considered water cells.
An island in grid2
is considered a sub-island if there is an island in grid1
that contains all the cells
that make up this island in grid2
.
Return the number of islands in grid2
that are considered sub-islands.
Example 1:
Input: grid1 = [[1,1,1,0,0],[0,1,1,1,1],[0,0,0,0,0],[1,0,0,0,0],[1,1,0,1,1]], grid2 = [[1,1,1,0,0],[0,0,1,1,1],[0,1,0,0,0],[1,0,1,1,0],[0,1,0,1,0]]
Output: 3
Explanation: In the picture above, the grid on the left is grid1 and the grid on the right is grid2.
The 1s colored red in grid2 are those considered to be part of a sub-island. There are three sub-islands.
Example 2:
Input: grid1 = [[1,0,1,0,1],[1,1,1,1,1],[0,0,0,0,0],[1,1,1,1,1],[1,0,1,0,1]], grid2 = [[0,0,0,0,0],[1,1,1,1,1],[0,1,0,1,0],[0,1,0,1,0],[1,0,0,0,1]]
Output: 2
Explanation: In the picture above, the grid on the left is grid1 and the grid on the right is grid2.
The 1s colored red in grid2 are those considered to be part of a sub-island. There are two sub-islands.
Constraints:
m == grid1.length == grid2.length
n == grid1[i].length == grid2[i].length
1 <= m, n <= 500
grid1[i][j]
andgrid2[i][j]
are either0
or1
.
Question 29 : Valid Parentheses
Given a string s
containing just the characters '('
, ')'
, '{'
, '}'
, '['
and ']'
, determine if the input
string is valid.
An input string is valid if:
- Open brackets must be closed by the same type of brackets.
- Open brackets must be closed in the correct order.
- Every close bracket has a corresponding open bracket of the same type.
Example 1:
Input: s = "()"
Output: true
Example 2:
Input: s = "()[]{}"
Output: true
Example 3:
Input: s = "(]"
Output: false
Example 4:
Input: s = "([])"
Output: true
Constraints:
1 <= s.length <= 104
s
consists of parentheses only'()[]{}'
.
Question 30 : Product of Array Except Self
Given an integer array nums
, return an array answer
such that answer[i]
is equal to the product of all the
elements of nums
except nums[i]
.
The product of any prefix or suffix of nums
is guaranteed to fit in a 32-bit integer.
You must write an algorithm that runs in O(n)
time and without using the division operation.
Example 1:
Input: nums = [1,2,3,4]
Output: [24,12,8,6]
Example 2:
Input: nums = [-1,1,0,-3,3]
Output: [0,0,9,0,0]
Constraints:
2 <= nums.length <= 105
-30 <= nums[i] <= 30
- The product of any prefix or suffix of
nums
is guaranteed to fit in a 32-bit integer.
Follow up: Can you solve the problem in O(1)
extra space complexity? (The output array does not count as extra
space for space complexity analysis.)
Question 31 : Binary Search
Given an array of integers nums
which is sorted in ascending order, and an integer target
, write a function to
search target
in nums
. If target
exists, then return its index. Otherwise, return -1
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [-1,0,3,5,9,12], target = 9
Output: 4
Explanation: 9 exists in nums and its index is 4
Example 2:
Input: nums = [-1,0,3,5,9,12], target = 2
Output: -1
Explanation: 2 does not exist in nums so return -1
Constraints:
1 <= nums.length <= 104
-104 < nums[i], target < 104
- All the integers in
nums
are unique. nums
is sorted in ascending order.
Question 32 : Minimum Add to Make Parentheses Valid
A parentheses string is valid if and only if:
- It is the empty string,
- It can be written as
AB
(A
concatenated withB
), whereA
andB
are valid strings, or - It can be written as
(A)
, whereA
is a valid string.
You are given a parentheses string s
. In one move, you can insert a parenthesis at any position of the string.
- For example, if
s = "()))"
, you can insert an opening parenthesis to be"(()))"
or a closing parenthesis to be"())))"
.
Return the minimum number of moves required to make s
valid.
Example 1:
Input: s = "())"
Output: 1
Example 2:
Input: s = "((("
Output: 3
Constraints:
1 <= s.length <= 1000
s[i]
is either'('
or')'
.
Question 33 : Longest Palindromic Substring
Given a string s
, return the longest palindromic substring in s
.
Example 1:
Input: s = "babad"
Output: "bab"
Explanation: "aba" is also a valid answer.
Example 2:
Input: s = "cbbd"
Output: "bb"
Constraints:
1 <= s.length <= 1000
s
consist of only digits and English letters.
Question 34 : Two Sum II - Input Array Is Sorted
Given a 1-indexed array of integers numbers
that is already sorted in non-decreasing order, find two
numbers such that they add up to a specific target
number. Let these two numbers be numbers[index1]
and numbers[index2]
where 1 <= index1 < index2 <= numbers.length
.
Return the indices of the two numbers, index1
and index2
, added by one as an integer
array [index1, index2]
of length 2.
The tests are generated such that there is exactly one solution. You may not use the same element twice.
Your solution must use only constant extra space.
Example 1:
Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
Explanation: The sum of 2 and 7 is 9. Therefore, index1 = 1, index2 = 2. We return [1, 2].
Example 2:
Input: numbers = [2,3,4], target = 6
Output: [1,3]
Explanation: The sum of 2 and 4 is 6. Therefore index1 = 1, index2 = 3. We return [1, 3].
Example 3:
Input: numbers = [-1,0], target = -1
Output: [1,2]
Explanation: The sum of -1 and 0 is -1. Therefore index1 = 1, index2 = 2. We return [1, 2].
Constraints:
2 <= numbers.length <= 3 * 104
-1000 <= numbers[i] <= 1000
numbers
is sorted in non-decreasing order.-1000 <= target <= 1000
- The tests are generated such that there is exactly one solution.
Question 35 : Container With Most Water
You are given an integer array height
of length n
. There are n
vertical lines drawn such that the two endpoints of
the ith
line are (i, 0)
and (i, height[i])
.
Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.
Notice that you may not slant the container.
Example 1:
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
Input: height = [1,1]
Output: 1
Constraints:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
Question 36 : 3Sum
Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]]
such that i != j
, i != k
,
and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
Question 37 : Group Anagrams
Given an array of strings strs
, group the anagrams together. You can return the answer in any order.
Example 1:
Input: strs = ["eat","tea","tan","ate","nat","bat"]
Output: [["bat"],["nat","tan"],["ate","eat","tea"]]
Explanation:
- There is no string in strs that can be rearranged to form
"bat"
. - The strings
"nat"
and"tan"
are anagrams as they can be rearranged to form each other. - The strings
"ate"
,"eat"
, and"tea"
are anagrams as they can be rearranged to form each other.
Example 2:
Input: strs = [""]
Output: [[""]]
Example 3:
Input: strs = ["a"]
Output: [["a"]]
Constraints:
1 <= strs.length <= 104
0 <= strs[i].length <= 100
strs[i]
consists of lowercase English letters.
Question 38 : Kth Largest Element in an Array
Given an integer array nums
and an integer k
, return the kth
largest element in the array.
Note that it is the kth
largest element in the sorted order, not the kth
distinct element.
Can you solve it without sorting?
Example 1:
Input: nums = [3,2,1,5,6,4], k = 2
Output: 5
Example 2:
Input: nums = [3,2,3,1,2,4,5,5,6], k = 4
Output: 4
Constraints:
1 <= k <= nums.length <= 105
-104 <= nums[i] <= 104
Question 39 : K Closest Points to Origin
Given an array of points
where points[i] = [xi, yi]
represents a point on the X-Y plane and an integer k
,
return the k
closest points to the origin (0, 0)
.
The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)2 + (y1 - y2)2
).
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in).
Example 1:
Input: points = [[1,3],[-2,2]], k = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest k = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], k = 2
Output: [[3,3],[-2,4]]
Explanation: The answer [[-2,4],[3,3]] would also be accepted.
Constraints:
1 <= k <= points.length <= 104
-104 <= xi, yi <= 104
Question 40 : Insert Delete GetRandom O(1)
Implement the RandomizedSet
class:
RandomizedSet()
Initializes theRandomizedSet
object.bool insert(int val)
Inserts an itemval
into the set if not present. Returnstrue
if the item was not present,false
otherwise.bool remove(int val)
Removes an itemval
from the set if present. Returnstrue
if the item was present,false
otherwise.int getRandom()
Returns a random element from the current set of elements (it's guaranteed that at least one element exists when this method is called). Each element must have the same probability of being returned.
You must implement the functions of the class such that each function works in average O(1)
time complexity.
Example 1:
Input
["RandomizedSet", "insert", "remove", "insert", "getRandom", "remove", "insert", "getRandom"]
[[], [1], [2], [2], [], [1], [2], []]
Output
[null, true, false, true, 2, true, false, 2]
Explanation
RandomizedSet randomizedSet = new RandomizedSet();
randomizedSet.insert(1); // Inserts 1 to the set. Returns true as 1 was inserted successfully.
randomizedSet.remove(2); // Returns false as 2 does not exist in the set.
randomizedSet.insert(2); // Inserts 2 to the set, returns true. Set now contains [1,2].
randomizedSet.getRandom(); // getRandom() should return either 1 or 2 randomly.
randomizedSet.remove(1); // Removes 1 from the set, returns true. Set now contains [2].
randomizedSet.insert(2); // 2 was already in the set, so return false.
randomizedSet.getRandom(); // Since 2 is the only number in the set, getRandom() will always return 2.
Constraints:
-231 <= val <= 231 - 1
- At most
2 *``105
calls will be made toinsert
,remove
, andgetRandom
. - There will be at least one element in the data structure when
getRandom
is called.
Question 41 : First Bad Version
You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of your product fails the quality check. Since each version is developed based on the previous version, all the versions after a bad version are also bad.
Suppose you have n
versions [1, 2, ..., n]
and you want to find out the first bad one, which causes all the
following ones to be bad.
You are given an API bool isBadVersion(version)
which returns whether version
is bad. Implement a function to find
the first bad version. You should minimize the number of calls to the API.
Example 1:
Input: n = 5, bad = 4
Output: 4
Explanation:
call isBadVersion(3) -> false
call isBadVersion(5) -> true
call isBadVersion(4) -> true
Then 4 is the first bad version.
Example 2:
Input: n = 1, bad = 1
Output: 1
Constraints:
1 <= bad <= n <= 231 - 1
Question 42 : Find Peak Element
A peak element is an element that is strictly greater than its neighbors.
Given a 0-indexed integer array nums
, find a peak element, and return its index. If the array contains multiple
peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞
. In other words, an element is always considered to be strictly greater
than a neighbor that is outside the array.
You must write an algorithm that runs in O(log n)
time.
Example 1:
Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,5,6,4]
Output: 5
Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
nums[i] != nums[i + 1]
for all validi
.
Question 43 : Sqrt(x)
Given a non-negative integer x
, return the square root of x
rounded down to the nearest integer. The returned
integer should be non-negative as well.
You must not use any built-in exponent function or operator.
- For example, do not use
pow(x, 0.5)
in c++ orx ** 0.5
in python.
Example 1:
Input: x = 4
Output: 2
Explanation: The square root of 4 is 2, so we return 2.
Example 2:
Input: x = 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since we round it down to the nearest integer, 2 is returned.
Constraints:
0 <= x <= 231 - 1
Question 44 : Koko Eating Bananas
Koko loves to eat bananas. There are n
piles of bananas, the ith
pile has piles[i]
bananas. The guards have gone
and will come back in h
hours.
Koko can decide her bananas-per-hour eating speed of k
. Each hour, she chooses some pile of bananas and eats k
bananas from that pile. If the pile has less than k
bananas, she eats all of them instead and will not eat any more
bananas during this hour.
Koko likes to eat slowly but still wants to finish eating all the bananas before the guards return.
Return the minimum integer k
such that she can eat all the bananas within h
hours.
Example 1:
Input: piles = [3,6,7,11], h = 8
Output: 4
Example 2:
Input: piles = [30,11,23,4,20], h = 5
Output: 30
Example 3:
Input: piles = [30,11,23,4,20], h = 6
Output: 23
Constraints:
1 <= piles.length <= 104
piles.length <= h <= 109
1 <= piles[i] <= 109
Question 45 : Subarray Sum Equals K
Given an array of integers nums
and an integer k
, return the total number of subarrays whose sum equals to k
.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [1,1,1], k = 2
Output: 2
Example 2:
Input: nums = [1,2,3], k = 3
Output: 2
Constraints:
1 <= nums.length <= 2 * 104
-1000 <= nums[i] <= 1000
-107 <= k <= 107
Question 46 : Continuous Subarray Sum
Given an integer array nums and an integer k, return true
if nums
has a good subarray or false
otherwise.
A good subarray is a subarray where:
- its length is at least two, and
- the sum of the elements of the subarray is a multiple of
k
.
Note that:
- A subarray is a contiguous part of the array.
- An integer
x
is a multiple ofk
if there exists an integern
such thatx = n * k
.0
is always a multiple ofk
.
Example 1:
Input: nums = [23,2,4,6,7], k = 6
Output: true
Explanation: [2, 4] is a continuous subarray of size 2 whose elements sum up to 6.
Example 2:
Input: nums = [23,2,6,4,7], k = 6
Output: true
Explanation: [23, 2, 6, 4, 7] is an continuous subarray of size 5 whose elements sum up to 42.
42 is a multiple of 6 because 42 = 7 * 6 and 7 is an integer.
Example 3:
Input: nums = [23,2,6,4,7], k = 13
Output: false
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
0 <= sum(nums[i]) <= 231 - 1
1 <= k <= 231 - 1
Question 47 : Count Number of Nice Subarrays
Given an array of integers nums
and an integer k
. A continuous subarray is called nice if there are k
odd
numbers on it.
Return the number of nice sub-arrays.
Example 1:
Input: nums = [1,1,2,1,1], k = 3
Output: 2
Explanation: The only sub-arrays with 3 odd numbers are [1,1,2,1] and [1,2,1,1].
Example 2:
Input: nums = [2,4,6], k = 1
Output: 0
Explanation: There are no odd numbers in the array.
Example 3:
Input: nums = [2,2,2,1,2,2,1,2,2,2], k = 2
Output: 16
Constraints:
1 <= nums.length <= 50000
1 <= nums[i] <= 10^5
1 <= k <= nums.length
Question 48 : Clone Graph
Given a reference of a node in a * connected* undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a value (int
) and a list (List[Node]
) of its neighbors.
class Node {
public int val;
public List<Node> neighbors;
}
Test case format:
For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node
with val == 1
, the second node with val == 2
, and so on. The graph is represented in the test case using an
adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1
. You must return the copy of the given node as a
reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
Constraints:
- The number of nodes in the graph is in the range
[0, 100]
. 1 <= Node.val <= 100
Node.val
is unique for each node.- There are no repeated edges and no self-loops in the graph.
- The Graph is connected and all nodes can be visited starting from the given node.
Question 49 : Copy List with Random Pointer
A linked list of length n
is given such that each node contains an additional random pointer, which could point to any
node in the list, or null
.
Construct a deep copy of the list. The deep copy should
consist of exactly n
brand new nodes, where each new node has its value set to the value of its corresponding
original node. Both the next
and random
pointer of the new nodes should point to new nodes in the copied list such
that the pointers in the original list and copied list represent the same list state. None of the pointers in the new
list should point to nodes in the original list.
For example, if there are two nodes X
and Y
in the original list, where X.random --> Y
, then for the corresponding
two nodes x
and y
in the copied list, x.random --> y
.
Return the head of the copied linked list.
The linked list is represented in the input/output as a list of n
nodes. Each node is represented as a pair
of [val, random_index]
where:
val
: an integer representingNode.val
random_index
: the index of the node (range from0
ton-1
) that therandom
pointer points to, ornull
if it does not point to any node.
Your code will only be given the head
of the original linked list.
Example 1:
Input: head = [[7,null],[13,0],[11,4],[10,2],[1,0]]
Output: [[7,null],[13,0],[11,4],[10,2],[1,0]]
Example 2:
Input: head = [[1,1],[2,1]]
Output: [[1,1],[2,1]]
Example 3:
Input: head = [[3,null],[3,0],[3,null]]
Output: [[3,null],[3,0],[3,null]]
Constraints:
0 <= n <= 1000
-104 <= Node.val <= 104
Node.random
isnull
or is pointing to some node in the linked list.
Question 50 : Is Graph Bipartite
There is an undirected graph with n
nodes, where each node is numbered between 0
and n - 1
. You are given a 2D
array graph
, where graph[u]
is an array of nodes that node u
is adjacent to. More formally, for each v
in graph[u]
, there is an undirected edge between node u
and node v
. The graph has the following properties:
- There are no self-edges (
graph[u]
does not containu
). - There are no parallel edges (
graph[u]
does not contain duplicate values). - If
v
is ingraph[u]
, thenu
is ingraph[v]
(the graph is undirected). - The graph may not be connected, meaning there may be two nodes
u
andv
such that there is no path between them.
A graph is bipartite if the nodes can be partitioned into two independent sets A
and B
such that every edge
in the graph connects a node in set A
and a node in set B
.
Return true
if and only if it is bipartite.
Example 1:
Input: graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
Output: false
Explanation: There is no way to partition the nodes into two independent sets such that every edge connects a node in one and a node in the other.
Example 2:
Input: graph = [[1,3],[0,2],[1,3],[0,2]]
Output: true
Explanation: We can partition the nodes into two sets: {0, 2} and {1, 3}.
Constraints:
graph.length == n
1 <= n <= 100
0 <= graph[u].length < n
0 <= graph[u][i] <= n - 1
graph[u]
does not containu
.- All the values of
graph[u]
are unique. - If
graph[u]
containsv
, thengraph[v]
containsu
.
Question 51 : Evaluate Division
You are given an array of variable pairs equations
and an array of real numbers values
,
where equations[i] = [Ai, Bi]
and values[i]
represent the equation Ai / Bi = values[i]
. Each Ai
or Bi
is a
string that represents a single variable.
You are also given some queries
, where queries[j] = [Cj, Dj]
represents the jth
query where you must find the
answer for Cj / Dj = ?
.
Return the answers to all queries. If a single answer cannot be determined, return -1.0
.
Note: The input is always valid. You may assume that evaluating the queries will not result in division by zero and that there is no contradiction.
**Note:**The variables that do not occur in the list of equations are undefined, so the answer cannot be determined for them.
Example 1:
Input: equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
Output: [6.00000,0.50000,-1.00000,1.00000,-1.00000]
Explanation:
Given: a / b = 2.0, b / c = 3.0
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
return: [6.0, 0.5, -1.0, 1.0, -1.0 ]
note: x is undefined => -1.0
Example 2:
Input: equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
Output: [3.75000,0.40000,5.00000,0.20000]
Example 3:
Input: equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
Output: [0.50000,2.00000,-1.00000,-1.00000]
Constraints:
1 <= equations.length <= 20
equations[i].length == 2
1 <= Ai.length, Bi.length <= 5
values.length == equations.length
0.0 < values[i] <= 20.0
1 <= queries.length <= 20
queries[i].length == 2
1 <= Cj.length, Dj.length <= 5
Ai, Bi, Cj, Dj
consist of lower case English letters and digits.
Question 52 : Maximum Subarray
Given an integer array nums
, find the subarray with the largest sum, and return its sum.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: The subarray [4,-1,2,1] has the largest sum 6.
Example 2:
Input: nums = [1]
Output: 1
Explanation: The subarray [1] has the largest sum 1.
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
Explanation: The subarray [5,4,-1,7,8] has the largest sum 23.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
Follow up: If you have figured out the O(n)
solution, try coding another solution using the divide and conquer
approach, which is more subtle.
Question 53 : Maximum Product Subarray
Given an integer array nums
, find a subarray that has the largest product, and return the product.
The test cases are generated so that the answer will fit in a 32-bit integer.
Example 1:
Input: nums = [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: nums = [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
Constraints:
1 <= nums.length <= 2 * 104
-10 <= nums[i] <= 10
- The product of any subarray of
nums
is guaranteed to fit in a 32-bit integer.
Question 54 : Unique Paths
There is a robot on an m x n
grid. The robot is initially located at the top-left corner (i.e., grid[0][0]
).
The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]
). The robot can only move either
down or right at any point in time.
Given the two integers m
and n
, return the number of possible unique paths that the robot can take to reach the
bottom-right corner.
The test cases are generated so that the answer will be less than or equal to 2 * 109
.
Example 1:
Input: m = 3, n = 7
Output: 28
Example 2:
Input: m = 3, n = 2
Output: 3
Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Down -> Down
2. Down -> Down -> Right
3. Down -> Right -> Down
Constraints:
1 <= m, n <= 100
Question 55 : Minimum Path Sum
Given a m x n
grid
filled with non-negative numbers, find a path from top left to bottom right, which minimizes the
sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 200
Question 56 : Longest Substring Without Repeating Characters
Given a string s
, find the length of the longest substring without repeating characters.
Example 1:
Input: s = "abcabcbb"
Output: 3
Explanation: The answer is "abc", with the length of 3.
Example 2:
Input: s = "bbbbb"
Output: 1
Explanation: The answer is "b", with the length of 1.
Example 3:
Input: s = "pwwkew"
Output: 3
Explanation: The answer is "wke", with the length of 3.
Notice that the answer must be a substring, "pwke" is a subsequence and not a substring.
Constraints:
0 <= s.length <= 5 * 104
s
consists of English letters, digits, symbols and spaces.
Question 57 : Max Consecutive Ones III
Given a binary array nums
and an integer k
, return the maximum number of consecutive 1
's in the array if you
can flip at most k
0
's.
Example 1:
Input: nums = [1,1,1,0,0,0,1,1,1,1,0], k = 2
Output: 6
Explanation: [1,1,1,0,0,1,1,1,1,1,1]
Bolded numbers were flipped from 0 to 1. The longest subarray is underlined.
Example 2:
Input: nums = [0,0,1,1,0,0,1,1,1,0,1,1,0,0,0,1,1,1,1], k = 3
Output: 10
Explanation: [0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,1]
Bolded numbers were flipped from 0 to 1. The longest subarray is underlined.
Constraints:
1 <= nums.length <= 105
nums[i]
is either0
or1
.0 <= k <= nums.length
Question 58 : Maximize the Confusion of An Exam
A teacher is writing a test with n
true/false questions, with 'T'
denoting true and 'F'
denoting false. He wants
to confuse the students by maximizing the number of consecutive questions with the same answer (multiple
trues or multiple falses in a row).
You are given a string answerKey
, where answerKey[i]
is the original answer to the ith
question. In addition, you
are given an integer k
, the maximum number of times you may perform the following operation:
- Change the answer key for any question to
'T'
or'F'
(i.e., setanswerKey[i]
to'T'
or'F'
).
Return the maximum number of consecutive 'T'
s or 'F'
s in the answer key after performing the operation at
most k
times.
Example 1:
Input: answerKey = "TTFF", k = 2
Output: 4
Explanation: We can replace both the 'F's with 'T's to make answerKey = "TTTT".
There are four consecutive 'T's.
Example 2:
Input: answerKey = "TFFT", k = 1
Output: 3
Explanation: We can replace the first 'T' with an 'F' to make answerKey = "FFFT".
Alternatively, we can replace the second 'T' with an 'F' to make answerKey = "TFFF".
In both cases, there are three consecutive 'F's.
Example 3:
Input: answerKey = "TTFTTFTT", k = 1
Output: 5
Explanation: We can replace the first 'F' to make answerKey = "TTTTTFTT"
Alternatively, we can replace the second 'F' to make answerKey = "TTFTTTTT".
In both cases, there are five consecutive 'T's.
Constraints:
n == answerKey.length
1 <= n <= 5 * 104
answerKey[i]
is either'T'
or'F'
1 <= k <= n
Question 59 : Longest Nice Subarray
You are given an array nums
consisting of positive integers.
We call a subarray of nums
nice if the bitwise AND of every pair of elements that are in different
positions in the subarray is equal to 0
.
Return the length of the longest nice subarray.
A subarray is a contiguous part of an array.
Note that subarrays of length 1
are always considered nice.
Example 1:
Input: nums = [1,3,8,48,10]
Output: 3
Explanation: The longest nice subarray is [3,8,48]. This subarray satisfies the conditions:
- 3 AND 8 = 0.
- 3 AND 48 = 0.
- 8 AND 48 = 0.
It can be proven that no longer nice subarray can be obtained, so we return 3.
Example 2:
Input: nums = [3,1,5,11,13]
Output: 1
Explanation: The length of the longest nice subarray is 1. Any subarray of length 1 can be chosen.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Question 60 : Random Pick with Weight
You are given a 0-indexed array of positive integers w
where w[i]
describes the weight of the ith
index.
You need to implement the function pickIndex()
, which randomly picks an index in the range [0, w.length - 1]
(*
inclusive*) and returns it. The probability of picking an index i
is w[i] / sum(w)
.
- For example, if
w = [1, 3]
, the probability of picking index0
is1 / (1 + 3) = 0.25
(i.e.,25%
), and the probability of picking index1
is3 / (1 + 3) = 0.75
(i.e.,75%
).
Example 1:
Input
["Solution","pickIndex"]
[[[1]],[]]
Output
[null,0]
Explanation
Solution solution = new Solution([1]);
solution.pickIndex(); // return 0. The only option is to return 0 since there is only one element in w.
Example 2:
Input
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
Output
[null,1,1,1,1,0]
Explanation
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // return 1. It is returning the second element (index = 1) that has a probability of 3/4.
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 0. It is returning the first element (index = 0) that has a probability of 1/4.
Since this is a randomization problem, multiple answers are allowed.
All of the following outputs can be considered correct:
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
......
and so on.
Constraints:
1 <= w.length <= 104
1 <= w[i] <= 105
pickIndex
will be called at most104
times.
Question 61 : Word Break
Given a string s
and a dictionary of strings wordDict
, return true
if s
can be segmented into a space-separated
sequence of one or more dictionary words.
Note that the same word in the dictionary may be reused multiple times in the segmentation.
Example 1:
Input: s = "leetcode", wordDict = ["leet","code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2:
Input: s = "applepenapple", wordDict = ["apple","pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.
Example 3:
Input: s = "catsandog", wordDict = ["cats","dog","sand","and","cat"]
Output: false
Constraints:
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s
andwordDict[i]
consist of only lowercase English letters.- All the strings of
wordDict
are unique.
Question 62 : House Robber
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and * it will automatically contact the police if two adjacent houses were broken into on the same night*.
Given an integer array nums
representing the amount of money of each house, return the maximum amount of money you
can rob tonight without alerting the police.
Example 1:
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 400
Question 63 : Coin Change
You are given an integer array coins
representing coins of different denominations and an integer amount
representing a total amount of money.
Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by
any combination of the coins, return -1
.
You may assume that you have an infinite number of each kind of coin.
Example 1:
Input: coins = [1,2,5], amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1
Example 2:
Input: coins = [2], amount = 3
Output: -1
Example 3:
Input: coins = [1], amount = 0
Output: 0
Constraints:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
Question 64 : Longest Increasing Subsequence
Given an integer array nums
, return the length of the longest strictly increasing subsequence.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up: Can you come up with an algorithm that runs in O(n log(n))
time complexity?
Question 65 : Longest Common Subsequence
Given two strings text1
and text2
, return the length of their longest common subsequence. If there is no *
common subsequence*, return 0
.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
- For example,
"ace"
is a subsequence of"abcde"
.
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
Constraints:
1 <= text1.length, text2.length <= 1000
text1
andtext2
consist of only lowercase English characters.
Question 66 : Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) node of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest
common ancestor is defined between two nodes p
and q
as the lowest node in T
that has both p
and q
as
descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [2,1], p = 2, q = 1
Output: 2
Constraints:
- The number of nodes in the tree is in the range
[2, 105]
. -109 <= Node.val <= 109
- All
Node.val
are unique. p != q
p
andq
will exist in the BST.
Question 67 : Binary Tree Maximum Path Sum
A path in a binary tree is a sequence of nodes where each pair of adjacent nodes in the sequence has an edge connecting them. A node can only appear in the sequence at most once. Note that the path does not need to pass through the root.
The path sum of a path is the sum of the node's values in the path.
Given the root
of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
- The number of nodes in the tree is in the range
[1, 3 * 104]
. -1000 <= Node.val <= 1000
Question 68 : Best Time to Buy and Sell Stock II
You are given an integer array prices
where prices[i]
is the price of a given stock on the ith
day.
On each day, you may decide to buy and/or sell the stock. You can only hold at most one share of the stock at any time. However, you can buy it then immediately sell it on the same day.
Find and return the maximum profit you can achieve.
Example 1:
Input: prices = [7,1,5,3,6,4]
Output: 7
Explanation: Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Total profit is 4 + 3 = 7.
Example 2:
Input: prices = [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Total profit is 4.
Example 3:
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: There is no way to make a positive profit, so we never buy the stock to achieve the maximum profit of 0.
Constraints:
1 <= prices.length <= 3 * 104
0 <= prices[i] <= 104
Question 69 : Jump Game
You are given an integer array nums
. You are initially positioned at the array's first index, and each element in
the array represents your maximum jump length at that position.
Return true
if you can reach the last index, or false
otherwise.
Example 1:
Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: nums = [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.
Constraints:
1 <= nums.length <= 104
0 <= nums[i] <= 105
Question 70 : Course Schedule II
There are a total of numCourses
courses you have to take, labeled from 0
to numCourses - 1
. You are given an
array prerequisites
where prerequisites[i] = [ai, bi]
indicates that you must take course bi
first if you want
to take course ai
.
- For example, the pair
[0, 1]
, indicates that to take course0
you have to first take course1
.
Return the ordering of courses you should take to finish all courses. If there are many valid answers, return any of them. If it is impossible to finish all courses, return an empty array.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]]
Output: [0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So the correct course order is [0,1].
Example 2:
Input: numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
Output: [0,2,1,3]
Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3].
Example 3:
Input: numCourses = 1, prerequisites = []
Output: [0]
Constraints:
1 <= numCourses <= 2000
0 <= prerequisites.length <= numCourses * (numCourses - 1)
prerequisites[i].length == 2
0 <= ai, bi < numCourses
ai != bi
- All the pairs
[ai, bi]
are distinct.
Question 71 : Path with Maximum Probability
You are given an undirected weighted graph of n
nodes (0-indexed), represented by an edge list
where edges[i] = [a, b]
is an undirected edge connecting the nodes a
and b
with a probability of success of
traversing that edge succProb[i]
.
Given two nodes start
and end
, find the path with the maximum probability of success to go from start
to end
and
return its success probability.
If there is no path from start
to end
, return 0. Your answer will be accepted if it differs from the correct
answer by at most 1e-5.
Example 1:
Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2
Output: 0.25000
Explanation: There are two paths from start to end, one having a probability of success = 0.2 and the other has 0.5 * 0.5 = 0.25.
Example 2:
Input: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2
Output: 0.30000
Example 3:
Input: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2
Output: 0.00000
Explanation: There is no path between 0 and 2.
Constraints:
2 <= n <= 10^4
0 <= start, end < n
start != end
0 <= a, b < n
a != b
0 <= succProb.length == edges.length <= 2*10^4
0 <= succProb[i] <= 1
- There is at most one edge between every two nodes.
Question 72 : Path With Minimum Effort
You are a hiker preparing for an upcoming hike. You are given heights
, a 2D array of size rows x columns
,
where heights[row][col]
represents the height of cell (row, col)
. You are situated in the top-left cell, (0, 0)
,
and you hope to travel to the bottom-right cell, (rows-1, columns-1)
(i.e., 0-indexed). You can move up, *
down*, left, or right, and you wish to find a route that requires the minimum effort.
A route's effort is the maximum absolute differencein heights between two consecutive cells of the route.
Return the minimum effort required to travel from the top-left cell to the bottom-right cell.
Example 1:
Input: heights = [[1,2,2],[3,8,2],[5,3,5]]
Output: 2
Explanation: The route of [1,3,5,3,5] has a maximum absolute difference of 2 in consecutive cells.
This is better than the route of [1,2,2,2,5], where the maximum absolute difference is 3.
Example 2:
Input: heights = [[1,2,3],[3,8,4],[5,3,5]]
Output: 1
Explanation: The route of [1,2,3,4,5] has a maximum absolute difference of 1 in consecutive cells, which is better than route [1,3,5,3,5].
Example 3:
Input: heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]]
Output: 0
Explanation: This route does not require any effort.
Constraints:
rows == heights.length
columns == heights[i].length
1 <= rows, columns <= 100
1 <= heights[i][j] <= 106
Question 73 : Merge Intervals
Given an array of intervals
where intervals[i] = [starti, endi]
, merge all overlapping intervals, and return an
array of the non-overlapping intervals that cover all the intervals in the input.
Example 1:
Input: intervals = [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6].
Example 2:
Input: intervals = [[1,4],[4,5]]
Output: [[1,5]]
Explanation: Intervals [1,4] and [4,5] are considered overlapping.
Constraints:
1 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 104
Question 74 : Insert Interval
You are given an array of non-overlapping intervals intervals
where intervals[i] = [starti, endi]
represent the
start and the end of the ith
interval and intervals
is sorted in ascending order by starti
. You are also given an
interval newInterval = [start, end]
that represents the start and end of another interval.
Insert newInterval
into intervals
such that intervals
is still sorted in ascending order by starti
and intervals
still does not have any overlapping intervals (merge overlapping intervals if necessary).
Return intervals
after the insertion.
Note that you don't need to modify intervals
in-place. You can make a new array and return it.
Example 1:
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]
Example 2:
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].
Constraints:
0 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 105
intervals
is sorted bystarti
in ascending order.newInterval.length == 2
0 <= start <= end <= 105
Question 75 : Interval List Intersections
You are given two lists of closed intervals, firstList
and secondList
, where firstList[i] = [starti, endi]
and secondList[j] = [startj, endj]
. Each list of intervals is pairwise disjoint and in sorted order.
Return the intersection of these two interval lists.
A closed interval [a, b]
(with a <= b
) denotes the set of real numbers x
with a <= x <= b
.
The intersection of two closed intervals is a set of real numbers that are either empty or represented as a closed
interval. For example, the intersection of [1, 3]
and [2, 4]
is [2, 3]
.
Example 1:
Input: firstList = [[0,2],[5,10],[13,23],[24,25]], secondList = [[1,5],[8,12],[15,24],[25,26]]
Output: [[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]]
Example 2:
Input: firstList = [[1,3],[5,9]], secondList = []
Output: []
Constraints:
0 <= firstList.length, secondList.length <= 1000
firstList.length + secondList.length >= 1
0 <= starti < endi <= 109
endi < starti+1
0 <= startj < endj <= 109
endj < startj+1
Question 76 : LRU Cache
Design a data structure that follows the constraints of a * *Least Recently Used (LRU) cache**.
Implement the LRUCache
class:
LRUCache(int capacity)
Initialize the LRU cache with positive sizecapacity
.int get(int key)
Return the value of thekey
if the key exists, otherwise return-1
.void put(int key, int value)
Update the value of thekey
if thekey
exists. Otherwise, add thekey-value
pair to the cache. If the number of keys exceeds thecapacity
from this operation, evict the least recently used key.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]
Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1); // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2); // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1); // return -1 (not found)
lRUCache.get(3); // return 3
lRUCache.get(4); // return 4
Constraints:
1 <= capacity <= 3000
0 <= key <= 104
0 <= value <= 105
- At most
2 * 105
calls will be made toget
andput
.
Question 77 : Binary Search Tree Iterator
Implement the BSTIterator
class that represents an iterator over the *
in-order traversal* of a binary search tree (BST):
BSTIterator(TreeNode root)
Initializes an object of theBSTIterator
class. Theroot
of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.boolean hasNext()
Returnstrue
if there exists a number in the traversal to the right of the pointer, otherwise returnsfalse
.int next()
Moves the pointer to the right, then returns the number at the pointer.
Notice that by initializing the pointer to a non-existent smallest number, the first call to next()
will return the
smallest element in the BST.
You may assume that next()
calls will always be valid. That is, there will be at least a next number in the in-order
traversal when next()
is called.
Example 1:
Input
["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"]
[[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []]
Output
[null, 3, 7, true, 9, true, 15, true, 20, false]
Explanation
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]);
bSTIterator.next(); // return 3
bSTIterator.next(); // return 7
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 9
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 15
bSTIterator.hasNext(); // return True
bSTIterator.next(); // return 20
bSTIterator.hasNext(); // return False
Constraints:
- The number of nodes in the tree is in the range
[1, 105]
. 0 <= Node.val <= 106
- At most
105
calls will be made tohasNext
, andnext
.
Follow up:
- Could you implement
next()
andhasNext()
to run in averageO(1)
time and useO(h)
memory, whereh
is the height of the tree?
Question 78 : Min Stack
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
Implement the MinStack
class:
MinStack()
initializes the stack object.void push(int val)
pushes the elementval
onto the stack.void pop()
removes the element on the top of the stack.int top()
gets the top element of the stack.int getMin()
retrieves the minimum element in the stack.
You must implement a solution with O(1)
time complexity for each function.
Example 1:
Input
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
Output
[null,null,null,null,-3,null,0,-2]
Explanation
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); // return -3
minStack.pop();
minStack.top(); // return 0
minStack.getMin(); // return -2
Constraints:
-231 <= val <= 231 - 1
- Methods
pop
,top
andgetMin
operations will always be called on non-empty stacks. - At most
3 * 104
calls will be made topush
,pop
,top
, andgetMin
.
Question 79 : Implement Stack using Queues
Implement a last-in-first-out (LIFO) stack using only two queues. The implemented stack should support all the
functions of a normal stack (push
, top
, pop
, and empty
).
Implement the MyStack
class:
void push(int x)
Pushes element x to the top of the stack.int pop()
Removes the element on the top of the stack and returns it.int top()
Returns the element on the top of the stack.boolean empty()
Returnstrue
if the stack is empty,false
otherwise.
Notes:
- You must use only standard operations of a queue, which means that
only
push to back
,peek/pop from front
,size
andis empty
operations are valid. - Depending on your language, the queue may not be supported natively. You may simulate a queue using a list or deque ( double-ended queue) as long as you use only a queue's standard operations.
Example 1:
Input
["MyStack", "push", "push", "top", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 2, 2, false]
Explanation
MyStack myStack = new MyStack();
myStack.push(1);
myStack.push(2);
myStack.top(); // return 2
myStack.pop(); // return 2
myStack.empty(); // return False
Constraints:
1 <= x <= 9
- At most
100
calls will be made topush
,pop
,top
, andempty
. - All the calls to
pop
andtop
are valid.
Follow-up: Can you implement the stack using only one queue?
Question 80 : Letter Combinations of a Phone Number
Given a string containing digits from 2-9
inclusive, return all possible letter combinations that the number could
represent. Return the answer in any order.
A mapping of digits to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.
Example 1:
Input: digits = "23"
Output: ["ad","ae","af","bd","be","bf","cd","ce","cf"]
Example 2:
Input: digits = ""
Output: []
Example 3:
Input: digits = "2"
Output: ["a","b","c"]
Constraints:
0 <= digits.length <= 4
digits[i]
is a digit in the range['2', '9']
.
Question 81 : Combination Sum
Given an array of distinct integers candidates
and a target integer target
, return a list of
all unique combinations of candidates
where the chosen numbers sum to target
. You may return the
combinations in any order.
The same number may be chosen from candidates
an unlimited number of times. Two combinations are unique if the
frequency of at least one of the chosen numbers is different.
The test cases are generated such that the number of unique combinations that sum up to target
is less than 150
combinations for the given input.
Example 1:
Input: candidates = [2,3,6,7], target = 7
Output: [[2,2,3],[7]]
Explanation:
2 and 3 are candidates, and 2 + 2 + 3 = 7. Note that 2 can be used multiple times.
7 is a candidate, and 7 = 7.
These are the only two combinations.
Example 2:
Input: candidates = [2,3,5], target = 8
Output: [[2,2,2,2],[2,3,3],[3,5]]
Example 3:
Input: candidates = [2], target = 1
Output: []
Constraints:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
- All elements of
candidates
are distinct. 1 <= target <= 40
Question 82 : Permutations
Given an array nums
of distinct integers, return all the possible permutations. You can return the answer in any
order.
Example 1:
Input: nums = [1,2,3]
Output: [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
Example 2:
Input: nums = [0,1]
Output: [[0,1],[1,0]]
Example 3:
Input: nums = [1]
Output: [[1]]
Constraints:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
- All the integers of
nums
are unique.
Question 83 : Subsets
Given an integer array nums
of unique elements, return all possible subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
Example 1:
Input: nums = [1,2,3]
Output: [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
Example 2:
Input: nums = [0]
Output: [[],[0]]
Constraints:
1 <= nums.length <= 10
-10 <= nums[i] <= 10
- All the numbers of
nums
are unique.
Question 84 : Palindrome Partitioning
Given a string s
, partition s
such that every substring of the partition is a palindrome. Return all possible
palindrome partitioning of s
.
Example 1:
Input: s = "aab"
Output: [["a","a","b"],["aa","b"]]
Example 2:
Input: s = "a"
Output: [["a"]]
Constraints:
1 <= s.length <= 16
s
contains only lowercase English letters.
Question 85 : Implement Trie (Prefix Tree)
A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently store and retrieve keys in a dataset of strings. There are various applications of this data structure, such as autocomplete and spellchecker.
Implement the Trie class:
Trie()
Initializes the trie object.void insert(String word)
Inserts the stringword
into the trie.boolean search(String word)
Returnstrue
if the stringword
is in the trie (i.e., was inserted before), andfalse
otherwise.boolean startsWith(String prefix)
Returnstrue
if there is a previously inserted stringword
that has the prefixprefix
, andfalse
otherwise.
Example 1:
Input
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
Output
[null, null, true, false, true, null, true]
Explanation
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // return True
trie.search("app"); // return False
trie.startsWith("app"); // return True
trie.insert("app");
trie.search("app"); // return True
Constraints:
1 <= word.length, prefix.length <= 2000
word
andprefix
consist only of lowercase English letters.- At most
3 * 104
calls in total will be made toinsert
,search
, andstartsWith
.
Question 86 : Basic Calculator
Given a string s
representing a valid expression, implement a basic calculator to evaluate it, and return the result
of the evaluation.
Note: You are not allowed to use any built-in function which evaluates strings as mathematical expressions,
such as eval()
.
Example 1:
Input: s = "1 + 1"
Output: 2
Example 2:
Input: s = " 2-1 + 2 "
Output: 3
Example 3:
Input: s = "(1+(4+5+2)-3)+(6+8)"
Output: 23
Constraints:
1 <= s.length <= 3 * 105
s
consists of digits,'+'
,'-'
,'('
,')'
, and' '
.s
represents a valid expression.'+'
is not used as a unary operation (i.e.,"+1"
and"+(2 + 3)"
is invalid).'-'
could be used as a unary operation (i.e.,"-1"
and"-(2 + 3)"
is valid).- There will be no two consecutive operators in the input.
- Every number and running calculation will fit in a signed 32-bit integer.
Question 87 : Daily Temperatures
Given an array of integers temperatures
represents the daily temperatures, return an array answer
such
that answer[i]
is the number of days you have to wait after the ith
day to get a warmer temperature. If there
is no future day for which this is possible, keep answer[i] == 0
instead.
Example 1:
Input: temperatures = [73,74,75,71,69,72,76,73]
Output: [1,1,4,2,1,1,0,0]
Example 2:
Input: temperatures = [30,40,50,60]
Output: [1,1,1,0]
Example 3:
Input: temperatures = [30,60,90]
Output: [1,1,0]
Constraints:
1 <= temperatures.length <= 105
30 <= temperatures[i] <= 100
Question 88 : Online Stock Span
Design an algorithm that collects daily price quotes for some stock and returns the span of that stock's price for the current day.
The span of the stock's price in one day is the maximum number of consecutive days (starting from that day and going backward) for which the stock price was less than or equal to the price of that day.
- For example, if the prices of the stock in the last four days is
[7,2,1,2]
and the price of the stock today is2
, then the span of today is4
because starting from today, the price of the stock was less than or equal2
for4
consecutive days. - Also, if the prices of the stock in the last four days is
[7,34,1,2]
and the price of the stock today is8
, then the span of today is3
because starting from today, the price of the stock was less than or equal8
for3
consecutive days.
Implement the StockSpanner
class:
StockSpanner()
Initializes the object of the class.int next(int price)
Returns the span of the stock's price given that today's price isprice
.
Example 1:
Input
["StockSpanner", "next", "next", "next", "next", "next", "next", "next"]
[[], [100], [80], [60], [70], [60], [75], [85]]
Output
[null, 1, 1, 1, 2, 1, 4, 6]
Explanation
StockSpanner stockSpanner = new StockSpanner();
stockSpanner.next(100); // return 1
stockSpanner.next(80); // return 1
stockSpanner.next(60); // return 1
stockSpanner.next(70); // return 2
stockSpanner.next(60); // return 1
stockSpanner.next(75); // return 4, because the last 4 prices (including today's price of 75) were less than or equal to today's price.
stockSpanner.next(85); // return 6
Constraints:
1 <= price <= 105
- At most
104
calls will be made tonext
.
Question 89 : Partition Equal Subset Sum
Given an integer array nums
, return true
if you can partition the array into two subsets such that the sum of the
elements in both subsets is equal or false
otherwise.
Example 1:
Input: nums = [1,5,11,5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input: nums = [1,2,3,5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 100
Question 91 : Find Median from Data Stream
The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value, and the median is the mean of the two middle values.
- For example, for
arr = [2,3,4]
, the median is3
. - For example, for
arr = [2,3]
, the median is(2 + 3) / 2 = 2.5
.
Implement the MedianFinder class:
MedianFinder()
initializes theMedianFinder
object.void addNum(int num)
adds the integernum
from the data stream to the data structure.double findMedian()
returns the median of all elements so far. Answers within10-5
of the actual answer will be accepted.
Example 1:
Input
["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]
Output
[null, null, null, 1.5, null, 2.0]
Explanation
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0
Constraints:
-105 <= num <= 105
- There will be at least one element in the data structure before calling
findMedian
. - At most
5 * 104
calls will be made toaddNum
andfindMedian
.
Follow up:
- If all integer numbers from the stream are in the range
[0, 100]
, how would you optimize your solution? - If
99%
of all integer numbers from the stream are in the range[0, 100]
, how would you optimize your solution?
Question 92 : Trapping Rain Water
Given n
non-negative integers representing an elevation map where the width of each bar is 1
, compute how much
water it can trap after raining.
Example 1:
Input: height = [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6
Explanation: The above elevation map (black section) is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.
Example 2:
Input: height = [4,2,0,3,2,5]
Output: 9
Constraints:
n == height.length
1 <= n <= 2 * 104
0 <= height[i] <= 105
Question 93 : Max Points on a Line
Given an array of points
where points[i] = [xi, yi]
represents a point on the X-Y plane, return the maximum
number of points that lie on the same straight line.
Example 1:
Input: points = [[1,1],[2,2],[3,3]]
Output: 3
Example 2:
Input: points = [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
Output: 4
Constraints:
1 <= points.length <= 300
points[i].length == 2
-104 <= xi, yi <= 104
- All the
points
are unique.
Question 95 : Maximum Profit in Job Scheduling
We have n
jobs, where every job is scheduled to be done from startTime[i]
to endTime[i]
, obtaining a profit
of profit[i]
.
You're given the startTime
, endTime
and profit
arrays, return the maximum profit you can take such that there are
no two jobs in the subset with overlapping time range.
If you choose a job that ends at time X
you will be able to start another job that starts at time X
.
Example 1:
Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
Output: 120
Explanation: The subset chosen is the first and fourth job.
Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
Output: 150
Explanation: The subset chosen is the first, fourth and fifth job.
Profit obtained 150 = 20 + 70 + 60.
Example 3:
Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4]
Output: 6
Constraints:
1 <= startTime.length == endTime.length == profit.length <= 5 * 104
1 <= startTime[i] < endTime[i] <= 109
1 <= profit[i] <= 104
Question 96 : Sliding Window Maximum
You are given an array of integers nums
, there is a sliding window of size k
which is moving from the very left of
the array to the very right. You can only see the k
numbers in the window. Each time the sliding window moves right by
one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Example 2:
Input: nums = [1], k = 1
Output: [1]
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= k <= nums.length
Question 97 : Edit Distance
Given two strings word1
and word2
, return the minimum number of operations required to convert word1
to word2
.
You have the following three operations permitted on a word:
- Insert a character
- Delete a character
- Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
Constraints:
0 <= word1.length, word2.length <= 500
word1
andword2
consist of lowercase English letters.
Question 98 : Largest Rectangle in Histogram
Given an array of integers heights
representing the histogram's bar height where the width of each bar is 1
, return
the area of the largest rectangle in the histogram.
Example 1:
Input: heights = [2,1,5,6,2,3]
Output: 10
Explanation: The above is a histogram where width of each bar is 1.
The largest rectangle is shown in the red area, which has an area = 10 units.
Example 2:
Input: heights = [2,4]
Output: 4
Constraints:
1 <= heights.length <= 105
0 <= heights[i] <= 104
Question 99 : Number of Atoms
Given a string formula
representing a chemical formula, return the count of each atom.
The atomic element always starts with an uppercase character, then zero or more lowercase letters, representing the name.
One or more digits representing that element's count may follow if the count is greater than 1
. If the count is 1
,
no digits will follow.
- For example,
"H2O"
and"H2O2"
are possible, but"H1O2"
is impossible.
Two formulas are concatenated together to produce another formula.
- For example,
"H2O2He3Mg4"
is also a formula.
A formula placed in parentheses, and a count (optionally added) is also a formula.
- For example,
"(H2O2)"
and"(H2O2)3"
are formulas.
Return the count of all elements as a string in the following form: the first name (in sorted order), followed by its
count (if that count is more than 1
), followed by the second name (in sorted order), followed by its count (if that
count is more than 1
), and so on.
The test cases are generated so that all the values in the output fit in a 32-bit integer.
Example 1:
Input: formula = "H2O"
Output: "H2O"
Explanation: The count of elements are {'H': 2, 'O': 1}.
Example 2:
Input: formula = "Mg(OH)2"
Output: "H2MgO2"
Explanation: The count of elements are {'H': 2, 'Mg': 1, 'O': 2}.
Example 3:
Input: formula = "K4(ON(SO3)2)2"
Output: "K4N2O14S4"
Explanation: The count of elements are {'K': 4, 'N': 2, 'O': 14, 'S': 4}.
Constraints:
1 <= formula.length <= 1000
formula
consists of English letters, digits,'('
, and')'
.formula
is always valid.
Question 100 : LFU Cache
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache
class:
LFUCache(int capacity)
Initializes the object with thecapacity
of the data structure.int get(int key)
Gets the value of thekey
if thekey
exists in the cache. Otherwise, returns-1
.void put(int key, int value)
Update the value of thekey
if present, or inserts thekey
if not already present. When the cache reaches itscapacity
, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkey
would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1
(due to the put
operation). The use
counter for a key in the cache is incremented either a get
or put
operation is called on it.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
Explanation
// cnt(x) = the use counter for key x
// cache=[] will show the last used order for tiebreakers (leftmost element is most recent)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // return 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.
// cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1.
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // return -1 (not found)
lfu.get(3); // return 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // return 4
// cache=[4,3], cnt(4)=2, cnt(3)=3
Constraints:
1 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- At most
2 * 105
calls will be made toget
andput
.