GOLD-Digger
Abstract
- We will utilize data from the UCSB course catalog to determine which factors (i.e. time, location, subject, days of the week) affect student enrollment.
Contributors:
- Wei Tung Chen
- Nicholas Duncan
Agenda:
- scrap data from UCSB course catalog x
- parse scraped data form UCSB course catalog x
- clean the data 1-2 weeks x
- remove empty rows
- convert the strings into meaningful data
- parse filenames into quarters and years
- build models 2 - 4 weeks
- we will use the 'pandas' python module to analyze the collected data
- TBD
- analyze built models 1 - week
- create a graphical representation of the data
- TBD
- PUBLISH IT! 1 - 2 weeks
Scraper and Parser Script Usage
- execution (normal):
python driver.py
- execution (with single quarter flag):
singleQuarterFlag=True python driver.py
- set up automatic scheduler every hour:
- open crontab editor:
crontab -e
- copy and paste line:
0 * * * * export DISPLAY=:0 && cd /path/to/directory/GOLD-Digger && cronFlag=True singleQuarterFlag=True python driver.py
- open crontab editor:
Heroku Server Instructions
- Execution (local):
- Install libraries:
npm install
- Start node server:
npm start
- Open browser at http://localhost:5000/.
- Install libraries:
- Execution (heroku):
heroku open
or- Open browser at https://ucsb-gold-digger.herokuapp.com/.
- Git Instruction:
- Push changes to GitHub:
git push origin master
- Push changes to Heroku:
git push heroku master
- Push changes to GitHub: