/GOLD-Digger

Primary LanguagePythonMIT LicenseMIT

GOLD-Digger

Abstract

  • We will utilize data from the UCSB course catalog to determine which factors (i.e. time, location, subject, days of the week) affect student enrollment.

Contributors:

  • Wei Tung Chen
  • Nicholas Duncan

Agenda:

  1. scrap data from UCSB course catalog x
  2. parse scraped data form UCSB course catalog x
  3. clean the data 1-2 weeks x
    • remove empty rows
    • convert the strings into meaningful data
    • parse filenames into quarters and years
  4. build models 2 - 4 weeks
    • we will use the 'pandas' python module to analyze the collected data
    • TBD
  5. analyze built models 1 - week
    • create a graphical representation of the data
    • TBD
  6. PUBLISH IT! 1 - 2 weeks

Scraper and Parser Script Usage

  • execution (normal): python driver.py
  • execution (with single quarter flag): singleQuarterFlag=True python driver.py
  • set up automatic scheduler every hour:
    1. open crontab editor: crontab -e
    2. copy and paste line: 0 * * * * export DISPLAY=:0 && cd /path/to/directory/GOLD-Digger && cronFlag=True singleQuarterFlag=True python driver.py

Heroku Server Instructions

  • Execution (local):
    1. Install libraries: npm install
    2. Start node server: npm start
    3. Open browser at http://localhost:5000/.
  • Execution (heroku):
  • Git Instruction:
    • Push changes to GitHub: git push origin master
    • Push changes to Heroku: git push heroku master