/DMTN

IEEE TMM 2023: A Decoupled Multi-Task Network for Shadow Removal

Primary LanguagePython

DMTN

1. Resources

国内资源链接(密码:e2ww)

1.1 Dataset

The SSRD dataset does not contain the ground truth of shadow-free images due to the presence of self shadow in images.

1.2 Results | Model Weight

TEST RESULTS ON SRD:

TEST RESULTS ON ISTD:

TEST RESULTS ON ISTD+:

TEST RESULTS ON SSRD: (DHAN and DMTN are pretrained on SRD dataset (size:420x320))

1.3 Visual results

Visual comparison results of penumbra removal on the SRD dataset - (Powered by MulimgViewer)

Visual comparison results of self shadow removal on the SSRD dataset - (Powered by MulimgViewer)

1.4 Evaluation Code

Currently, MATLAB evaluation codes are used in most state-of-the-art works for shadow removal.

Our evaluation code (i.e., 1+2)

  1. MAE (i.e., RMSE in paper): https://github.com/tsingqguo/exposure-fusion-shadow-removal
  2. PSNR+SSIM: https://github.com/zhuyr97/AAAI2022_Unfolding_Network_Shadow_Removal/tree/master/codes

Notably, there are slight differences between the different evaluation codes.

2. Environments

ubuntu18.04+cuda10.2+pytorch1.7.1

  1. create environments
conda env create -f install.yaml
  1. activate environments
conda activate DMTN

3. Data Processing

For example, generate the dataset list of ISTD:

  1. Download:
    cp -r ISTD_Dataset_arg/train_B ISTD_Dataset_arg/train_B_ISTD
    cp -r ISTD_Dataset_arg/train_B SRD_Dataset_arg/train_B_ISTD
    
    cp vgg19-dcbb9e9d.pth ISTD_Dataset_arg/
    cp vgg19-dcbb9e9d.pth SRD_Dataset_arg/
    
  2. The data folders should be:
    ISTD_Dataset_arg
        * train
            - train_A # ISTD shadow image
            - train_B # ISTD shadow mask
            - train_C # ISTD shadowfree image
            - shadow_free # USR shadowfree images
            - synC # Syn. shadow
            - train_B_ISTD # ISTD shadow mask
        * test
            - test_A # ISTD shadow image
            - test_B # ISTD shadow mask
            - test_C # ISTD shadowfree image
        * vgg19-dcbb9e9d.pth
    
    SRD_Dataset_arg
        * train #  renaming the original `Train` folder in `SRD`.
            - train_A # SRD shadow image, renaming the original `shadow` folder in `SRD`.
            - train_B # SRD shadow mask
            - train_C # SRD shadowfree image, renaming the original `shadow_free` folder in `SRD`.
            - shadow_free # USR shadowfree images
            - synC # Syn. shadow
            - train_B_ISTD # ISTD shadow mask
        * test #  renaming the original `test_data` folder in `SRD`.
            - train_A # SRD shadow image, renaming the original `shadow` folder in `SRD`.
            - train_B # SRD shadow mask
            - train_C # SRD shadowfree image, renaming the original `shadow_free` folder in `SRD`.
        * vgg19-dcbb9e9d.pth 
    
  3. Edit generate_flist_istd.py: (Replace path)
ISTD_path = "/Your_data_storage_path/ISTD_Dataset_arg"
  1. Generate Datasets List. (Already contains ISTD+DA.)
conda activate DMTN
cd script/
python generate_flist_istd.py
  1. Edit config_ISTD.yml: (Replace path)
DATA_ROOT: /Your_data_storage_path/ISTD_Dataset_arg

4. Training+Test+Evaluation

4.1 Training+Test+Evaluation

For example, training+test+evaluation on ISTD dataset.

cp config/config_ISTD.yml config.yml 
cp config/run_ISTD.py run.py
conda activate DMTN
python run.py

4.2 Only Test and Evaluation

For example, test+evaluation on ISTD dataset.

  1. Download weight file(DMTN_ISTD.pth) to pre_train_model/ISTD
  2. Copy file
cp config/config_ISTD.yml config.yml 
cp config/run_ISTD.py run.py
mkdir -p checkpoints/ISTD/
cp config.yml checkpoints/ISTD/config.yml
cp pre_train_model/ISTD/DMTN_ISTD.pth  checkpoints/ISTD/ShadowRemoval.pth
  1. Edit run.py. Comment the training code.
    # # pre_train (no data augmentation)
    # MODE = 0
    # print('\nmode-'+str(MODE)+': start pre_training(data augmentation)...\n')
    # for i in range(1):
    #     skip_train = init_config(checkpoints_path, MODE=MODE,
    #                             EVAL_INTERVAL_EPOCH=1, EPOCH=[90,i])
    #     if not skip_train:
    #         main(MODE, config_path)
    # src_path = Path('./pre_train_model') / \
    #     config["SUBJECT_WORD"]/(config["MODEL_NAME"]+'_pre_da.pth')
    # copypth(dest_path, src_path)

    # # train
    # MODE = 2
    # print('\nmode-'+str(MODE)+': start training...\n')
    # for i in range(1):
    #     skip_train = init_config(checkpoints_path, MODE=MODE,
    #                             EVAL_INTERVAL_EPOCH=0.1, EPOCH=[60,i])
    #     if not skip_train:
    #         main(MODE, config_path)
    # src_path = Path('./pre_train_model') / \
    #     config["SUBJECT_WORD"]/(config["MODEL_NAME"]+'_final.pth')
    # copypth(dest_path, src_path)
  1. Run
conda activate DMTN
python run.py

4.3 Show Results

After evaluation, execute the following code to display the final RMSE.

python show_eval_result.py

Output:

running rmse-shadow: xxx, rmse-non-shadow: xxx, rmse-all: xxx # ISRD

This is the evaluation result of python+pytorch, which is only used during training. To get the evaluation results in the paper, you need to run the matlab code.

4.4 Test on SSRD

  1. Edit src/network/network_DMTN.py. Modify the line (https://github.com/nachifur/DMTN/blob/main/src/network/network_DMTN.py#L339).
SSRD = True
  1. Test like the section 4.2 Only Test and Evaluation.

5. Acknowledgements

Part of the code is based upon:

6. Citation

@ARTICLE{liu2023decoupled,
  author={Liu, Jiawei and Wang, Qiang and Fan, Huijie and Li, Wentao and Qu, Liangqiong and Tang, Yandong},
  journal={IEEE Transactions on Multimedia}, 
  title={A Decoupled Multi-Task Network for Shadow Removal}, 
  year={2023},
  volume={},
  number={},
  pages={1-14},
  doi={10.1109/TMM.2023.3252271}}

7. Contact

Please contact Jiawei Liu if there is any question (liujiawei18@mails.ucas.ac.cn).

8. Revised Errors in the Paper

Sorry! Here are the revised errors:

  1. In Section III-C-2)-Fig. 7 (or Fig. 5(b)) shows..., "we can achieve feature decoupling, i.e., some channels of F represent shadow images (I_m I_s)".