influxdbr
R interface to InfluxDB
This package allows you to fetch and write time series data from/to an InfluxDB server. Additionally, handy wrappers for the Influx Query Language (IQL) to manage and explore a remote database are provided.
Installation
Installation is easy thanks to CRAN:
install.packages("influxdbr")
You can install the dev version from github with:
# install.packages("remotes")
remotes::install_github("dleutnant/influxdbr@dev")
Example
This is a basic example which shows you how to communicate (i.e. query and write data) with the InfluxDB server.
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(influxdbr)
library(xts)
#> Loading required package: zoo
#>
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#>
#> as.Date, as.Date.numeric
#>
#> Attaching package: 'xts'
#> The following objects are masked from 'package:dplyr':
#>
#> first, last
Let’s create first some sample data from the xts package and assign arbitrary attributes:
# attach data "sample_matrix"
data("sample_matrix")
# create xts object
xts_data <- xts::as.xts(x = sample_matrix)
# assign some attributes
xts::xtsAttributes(xts_data) <- list(info = "SampleDataMatrix",
UnitTesting = TRUE,
n = 180,
source = "xts")
# print structure to inspect the object
str(xts_data)
#> An 'xts' object on 2007-01-02/2007-06-30 containing:
#> Data: num [1:180, 1:4] 50 50.2 50.4 50.4 50.2 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr [1:4] "Open" "High" "Low" "Close"
#> Indexed by objects of class: [POSIXct,POSIXt] TZ:
#> xts Attributes:
#> List of 4
#> $ info : chr "SampleDataMatrix"
#> $ UnitTesting: logi TRUE
#> $ n : num 180
#> $ source : chr "xts"
InfluxDB connection
To connect to an InfluxDB server, we need a connection object. A
connection object can be created by providing usual server details (e.g.
host
, port
, …) or with help of a group file, which conveniently
holds all information for us (s. package documentation):
# create connection object
# (here: based on a config file with group "admin" in it (s. package documentation))
con <- influx_connection(group = "admin")
#> Success: (204) No Content
The influxdbr
package provides handy wrappers to manage a remote
InfluxDB:
# create new database
create_database(con = con, db = "mydb")
# list all databases
show_databases(con = con)
#> # A tibble: 10 x 1
#> name
#> <chr>
#> 1 _internal
#> 2 stbmod
#> 3 wasig
#> 4 wasig-fr
#> 5 wasig-h
#> 6 test
#> 7 oscar_test
#> 8 longterm
#> 9 deznwba
#> 10 mydb
Write data
xts
Writing an xts-object to the server can be achieved with influx_write
.
In this case, columnnames of the xts
object are used as InfluxDB’s
field keys, xts
’s coredata represent field values. Attributes are
preserved and written as tag keys and values, respectively.
# write example xts-object to database
influx_write(con = con,
db = "mydb",
x = xts_data,
measurement = "sampledata")
data.frame
Writing a data.frame (or tibble) to the server can also be achieved with
influx_write
. In this case, we need to specify which columns of the
data.frame represent time and tags. Fields are automatically
determined.Each row represents a unique data point. NA
’s are not
supported and need to be removed. Timestamps should be located in column
time
.
Remember that time and tags are optional: InfluxDB uses the server’s local nanosecond timestamp in UTC if the timestamp is not included with the point.
# convert the existing xts-object to data.frame
df_data <- dplyr::bind_cols(time = zoo::index(xts_data), # timestamp
data.frame(xts_data)) %>% # coredata
dplyr::mutate(info = "SampleDataMatrix", # add tag 'info'
UnitTesting = TRUE, # add tag 'UnitTesting'
n = row_number(), # add tag 'n'
source = "df") # add source 'df'
df_data
#> # A tibble: 180 x 9
#> time Open High Low Close info UnitT… n sour…
#> <dttm> <dbl> <dbl> <dbl> <dbl> <chr> <lgl> <int> <chr>
#> 1 2007-01-02 00:00:00 50.0 50.1 50.0 50.1 SampleD… T 1 df
#> 2 2007-01-03 00:00:00 50.2 50.4 50.2 50.4 SampleD… T 2 df
#> 3 2007-01-04 00:00:00 50.4 50.4 50.3 50.3 SampleD… T 3 df
#> 4 2007-01-05 00:00:00 50.4 50.4 50.2 50.3 SampleD… T 4 df
#> 5 2007-01-06 00:00:00 50.2 50.2 50.1 50.2 SampleD… T 5 df
#> 6 2007-01-07 00:00:00 50.1 50.2 50.0 50.0 SampleD… T 6 df
#> 7 2007-01-08 00:00:00 50.0 50.1 50.0 50.0 SampleD… T 7 df
#> 8 2007-01-09 00:00:00 50.0 50.0 49.8 49.9 SampleD… T 8 df
#> 9 2007-01-10 00:00:00 49.9 50.1 49.9 50.0 SampleD… T 9 df
#> 10 2007-01-11 00:00:00 49.9 50.2 49.9 50.2 SampleD… T 10 df
#> # ... with 170 more rows
# write example data.frame to database
influx_write(con = con,
db = "mydb",
x = df_data,
time_col = "time", tag_cols = c("info", "UnitTesting", "n", "source"),
measurement = "sampledata")
We can now check if the time series were succefully written:
# check if measurements were succefully written
show_measurements(con = con, db = "mydb")
#> # A tibble: 1 x 1
#> name
#> <chr>
#> 1 sampledata
Query data
To query the database, two functions influx_query
and influx_select
are available. influx_select
wraps around influx_query
and can be
useful for simple requests because it provides default query parameters.
The return type can be configured to be of class tibble
or of class
xts
.
Return tibbles
If return_xts = FALSE
a list of tibbles per query statement is
returned. Each tibble contains columns with statement_id,
series_names, tags, time and fields.
# fetch time series data by using the helper function `influx_select`
result <- influx_select(con = con,
db = "mydb",
field_keys = "Open, High",
measurement = "sampledata",
where = "source = 'df'",
group_by = "*",
limit = 10,
order_desc = TRUE,
return_xts = FALSE)
result
#> [[1]]
#> # A tibble: 180 x 10
#> state… serie… serie… Unit… info n sour… time Open
#> <int> <chr> <lgl> <chr> <chr> <chr> <chr> <dttm> <dbl>
#> 1 0 sampl… F TRUE Sampl… 99 df 2007-04-09 22:00:00 49.6
#> 2 0 sampl… F TRUE Sampl… 98 df 2007-04-08 22:00:00 49.4
#> 3 0 sampl… F TRUE Sampl… 97 df 2007-04-07 22:00:00 49.5
#> 4 0 sampl… F TRUE Sampl… 96 df 2007-04-06 22:00:00 49.5
#> 5 0 sampl… F TRUE Sampl… 95 df 2007-04-05 22:00:00 49.3
#> 6 0 sampl… F TRUE Sampl… 94 df 2007-04-04 22:00:00 49.4
#> 7 0 sampl… F TRUE Sampl… 93 df 2007-04-03 22:00:00 49.2
#> 8 0 sampl… F TRUE Sampl… 92 df 2007-04-02 22:00:00 49.1
#> 9 0 sampl… F TRUE Sampl… 91 df 2007-04-01 22:00:00 48.9
#> 10 0 sampl… F TRUE Sampl… 90 df 2007-03-31 22:00:00 48.9
#> # ... with 170 more rows, and 1 more variable: High <dbl>
Return xts
If return_xts = TRUE
a list of xts objects per query statement is
returned. Because xts objects are basically matrices (which can store
one data type only), a single xts object is created for each InfluxDB
field. This ensures a correct representation of the field values data
type (instead of getting all into a “character” matrix). InfluxDB tags
are now xts attributes.
# fetch time series data by using the helper function `influx_select`
result <- influx_select(con = con,
db = "mydb",
field_keys = "Open, High",
measurement = "sampledata",
where = "source = 'xts'",
group_by = "*",
limit = 10,
order_desc = TRUE,
return_xts = TRUE)
str(result)
#> List of 1
#> $ :List of 2
#> ..$ sampledata:An 'xts' object on 2007-06-20 22:00:00/2007-06-29 22:00:00 containing:
#> Data: num [1:10, 1] 47.7 47.6 47.2 47.2 47.2 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr "Open"
#> Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT
#> xts Attributes:
#> List of 7
#> .. ..$ statement_id : int 0
#> .. ..$ series_names : chr "sampledata"
#> .. ..$ series_partial: logi FALSE
#> .. ..$ UnitTesting : chr "TRUE"
#> .. ..$ info : chr "SampleDataMatrix"
#> .. ..$ n : chr "180"
#> .. ..$ source : chr "xts"
#> ..$ sampledata:An 'xts' object on 2007-06-20 22:00:00/2007-06-29 22:00:00 containing:
#> Data: num [1:10, 1] 47.7 47.6 47.2 47.3 47.4 ...
#> - attr(*, "dimnames")=List of 2
#> ..$ : NULL
#> ..$ : chr "High"
#> Indexed by objects of class: [POSIXct,POSIXt] TZ: GMT
#> xts Attributes:
#> List of 7
#> .. ..$ statement_id : int 0
#> .. ..$ series_names : chr "sampledata"
#> .. ..$ series_partial: logi FALSE
#> .. ..$ UnitTesting : chr "TRUE"
#> .. ..$ info : chr "SampleDataMatrix"
#> .. ..$ n : chr "180"
#> .. ..$ source : chr "xts"
Simplify InfluxDB response
In case the InfluxDB response is expected to be a single series only, we
can flatten the list (simplifyList = TRUE
) to directly get to the
data. This enhances a pipeable work flow.
result <- influx_select(con = con,
db = "mydb",
field_keys = "Open",
measurement = "sampledata",
where = "source = 'df'",
group_by = "*",
limit = 10,
order_desc = TRUE,
return_xts = FALSE,
simplifyList = TRUE)
str(result)
#> List of 1
#> $ :Classes 'tbl_df', 'tbl' and 'data.frame': 180 obs. of 9 variables:
#> ..$ statement_id : int [1:180] 0 0 0 0 0 0 0 0 0 0 ...
#> ..$ series_names : chr [1:180] "sampledata" "sampledata" "sampledata" "sampledata" ...
#> ..$ series_partial: logi [1:180] FALSE FALSE FALSE FALSE FALSE FALSE ...
#> ..$ UnitTesting : chr [1:180] "TRUE" "TRUE" "TRUE" "TRUE" ...
#> ..$ info : chr [1:180] "SampleDataMatrix" "SampleDataMatrix" "SampleDataMatrix" "SampleDataMatrix" ...
#> ..$ n : chr [1:180] "99" "98" "97" "96" ...
#> ..$ source : chr [1:180] "df" "df" "df" "df" ...
#> ..$ time : POSIXct[1:180], format: "2007-04-09 22:00:00" ...
#> ..$ Open : num [1:180] 49.6 49.4 49.5 49.5 49.3 ...
Contributions
This Git repository uses the Git
Flow branching
model (the git flow
extension is useful for this). The
dev
branch contains
the latest contributions and other code that will appear in the next
release, and the master
branch contains the code of the latest release, which is exactly what is
currently on CRAN.
Contributing to this package is easy. Just send a pull
request. When
you send your PR, make sure dev
is the destination branch on the
influxdbr repository. Your PR
should pass R CMD check --as-cran
, which will also be checked by
Travis CI when
the PR is submitted.
Code of conduct
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.
Citation
To cite package ‘influxdbr’ in publications use:
Dominik Leutnant (2018). influxdbr: R Interface to InfluxDB. R package version 0.14.2. https://github.com/dleutnant/influxdbr
A BibTeX entry for LaTeX users is
@Manual{, title = {influxdbr: R Interface to InfluxDB}, author = {Dominik Leutnant}, year = {2018}, note = {R package version 0.14.2}, url = {https://github.com/dleutnant/influxdbr}, }