Abstract: Recent breakthroughs in text-to-image models have opened up promising research avenues in personalized image generation, enabling users to create diverse images of a specific subject using natural language prompts. However, existing methods often suffer from performance degradation when given only a single reference image. They tend to overfit the input, producing highly similar outputs regardless of the text prompt. This paper addresses the challenge of one-shot personalization by mitigating overfitting, enabling the creation of controllable images through text prompts. Specifically, we propose a selective fine-tuning strategy that focuses on the text encoder. Furthermore, we introduce three key techniques to enhance personalization performance: (1) augmentation tokens to encourage feature disentanglement and alleviate overfitting, (2) a knowledge-preservation loss to reduce language drift and promote generalizability across diverse prompts, and (3) SNR-weighted sampling for efficient training. Extensive experiments demonstrate that our approach efficiently generates high-quality, diverse images using only a single reference image while significantly reducing memory and storage requirements.
Our code has been tested on python3.10
with NVIDIA A6000 GPU
. However, it should work with the other recent Python versions and NVIDIA GPUs.
We recommend using a Python virtual environment or anaconda for managing dependencies. You can install the required packages using one of the following methods:
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
conda env create -f environment.yml
conda activate textboost
For the exact package versions we used, please refer to requirements.txt file.
To get started, you will need to download the human-written prompts dataset. Follow the instructions from InstructPix2Pix to download human-written-prompts.jsonl
, and then place it in the data
directory.
We used a single image from each instance of DreamBooth benchmark. You can find images for each instance in data/dreambooth_n1.txt. We provided a simple script to help automate this.
git clone https://github.com/google/dreambooth
python split_dreambooth.py --dreambooth-dir dreambooth/dataset
If not specified, the code will attempt to use a first n=--num_samples
images in the directory.
Notice: Our method was primarily tested using Stable Diffusion v1.5; however, this version is currently unavailable. You can use another version such as v1.4.
To train the model, you can use the following command:
accelerate launch train_textboost.py \
--pretrained_model_name_or_path=CompVis/stable-diffusion-v1-4 \
--instance_data_dir data/dreambooth_n1_train/dog \
--output_dir=output/tb/dog \
--instance_token '<dog> dog' \
--class_token 'dog' \
--validation_prompt 'a <dog> dog in the jungle' \
--validation_steps=50 \
--placeholder_token '<dog>' \
--initializer_token 'dog' \
--learning_rate=5e-5 \
--emb_learning_rate=1e-3 \
--train_batch_size=8 \
--max_train_steps=250 \
--checkpointing_steps=50 \
--num_samples=1 \
--augment=paug \
--lora_rank=4 \
--augment_inversion
Alternatively, you can also use torchrun
command. Here's an example:
CUDA_VISIBLE_DEVICES=0 torchrun --rdzv-backend=c10d --rdzv-endpoint=localhost:0 --nproc-per-node=1 train_textboost.py \
--pretrained_model_name_or_path=CompVis/stable-diffusion-v1-4 \
--instance_data_dir data/dreambooth_n1_train/dog \
--output_dir=output/tb/dog \
--instance_token '<dog> dog' \
--class_token 'dog' \
--validation_prompt 'a <dog> dog in the jungle' \
--validation_steps=50 \
--placeholder_token '<dog>' \
--initializer_token 'dog' \
--learning_rate=5e-5 \
--emb_learning_rate=1e-3 \
--train_batch_size=8 \
--max_train_steps=250 \
--checkpointing_steps=50 \
--num_samples=1 \
--augment=paug \
--lora_rank=4 \
--augment_inversion
To train the model on all DreamBooth instances, run the following command:
python run_textboost.py
After training, you can generate images using the following command:
python inference.py output/tb/dog --model CompVis/stable-diffusion-v1-4 --prompt "photo of a <dog> dog" --output test.jpg
To evaluate the trained model, ensure that the folder structure follows the format shown below:
.
├── output
│ └── tb-sd1.5-n1
│ ├── backpack
│ ├── backpack_dog
│ ...
│ └── wolf_plushie
└── ...
Once the folder structure is correctly set up, run the following command:
CUDA_VISIBLE_DEVICES=0 python evaluate_dreambooth.py output/tb-sd1.5-n1 --token-format '<INSTANCE> SUBJECT'
- Here,
<INSTANCE>
can be replaced with your own modifier token (e.g.<new>
).
@article{park2024textboost,
title = {TextBoost: Towards One-Shot Personalization of Text-to-Image Models},
author = {Park, NaHyeon and Kim, Kunhee and Shim, Hyunjung},
journal = {arXiv preprint},
year = {2024},
eprint = {arXiv:2409.08248}
}
All materials in this repository are available under the MIT License.