An self contained example project for testing and development of myst syntax
- Run
conda create -n myst_parser_env
andsource activate myst_parser_env
wheremyst_parser_env
is the name of the virutal environment - Run
conda install pip
which will install pip in your virtual environment - Find your anaconda environment directory, for example:
opt/anaconda3/envs/myst_parser_env
- Install package by doing:
opt/anaconda3/envs/myst_parser_env/bin/pip install -e "git+https://github.com/ExecutableBookProject/MyST-Parser.git#egg=myst-parser[sphinx]"
We use the Pandoc
package to convert files from rST
to Pandoc
syntax.
- Install
Pandoc
package by running:brew install pandoc
- Run the following bash script to convert from
rST
toPandoc
syntax:
FILES=source_rst/*.rst
for f in $FILES
do
s="${f##*/}" # remove path
filename="source/${s%.*}-MyST" # remove file suffix
echo "Converting $f to $filename.md"
`pandoc $f -f rst -t markdown -o $filename.md`
done
- Decision on MyST footnote reference: update this MyST file
finite_markov-MyST.md
- Test cross-references:
finite_markov
has a potential test-case @JIT - Comment label in math equation?
%
doesn't work - Math labels are not always present post conversion (this information is not present at all in the document)
- Check whether using int footnote produces a bug for
[^1]
- Add space:
[Tau86]George Tauchen.
- References appear after citations by design. Does it make sense?
- Remove "\n" from citation because it does not render in MyST
rST | Pandoc | MyST |
---|---|---|
--- |
\-\-- |
--- |
`P` |
[P]{.title-ref} |
`P` |
`rich` |
[rich]{.title-ref} |
`rich` |
:eq:`fin_mc_fr` |
`fin_mc_fr`{.interpreted-text role="eq"} |
{math:numref}`fin_mc_fr` |
:doc:`lecture on AR(1) processes <ar1_processes>` |
`lecture on AR(1) processes <ar1_processes>`{.interpreted-text role="doc"} |
[lecture on AR(1) processes](ar1_processes) |
:cite:`caplin1985variability` |
`caplin1985variability`{.interpreted-text role="cite"} |
{cite}`caplin1985variability` |
- Also
.. code:: ipython3
>{.sourceCode .ipython3}
.. code-block:: python3
P = [[0.4, 0.6],
[0.2, 0.8]]
```{.sourceCode .python3}
P = [[0.4, 0.6],
[0.2, 0.8]]
```
```python
P = [[0.4, 0.6],
[0.2, 0.8]]
```
.. _new_interp_sd:
This gives us another way to interpret the stationary distribution --- provided that the convergence result in :eq:`llnfmc0` is valid.
::: {#new_interp_sd}
This gives us another way to interpret the stationary distribution ---
provided that the convergence result in `llnfmc0`{.interpreted-text
role="eq"} is valid.
:::
(new_interp_sd)=
This gives us another way to interpret the stationary distribution --- provided that the convergence result in :eq:`llnfmc0` is valid.
.. code-block:: none
d -> h;
``` {.sourceCode .none}
d -> h;
```
```
d -> h;
```
Even better, write a function that returns an instance of `QuantEcon.py's <http://quantecon.org/quantecon-py>`__ `MarkovChain` class.
Even better, write a function that returns an instance of
[QuantEcon.py\'s](http://quantecon.org/quantecon-py)
[MarkovChain]{.title-ref} class.
Even better, write a function that returns an instance of
[QuantEcon.py\'s](http://quantecon.org/quantecon-py)
`MarkovChain` class.
.. highlight:: python3
::: {.highlight}
python3
:::
******************
Inventory Dynamics
******************
Inventory Dynamics
==================
# Inventory Dynamics
************************************
:index:`Finite Markov Chains`
************************************
`Finite Markov Chains`{.interpreted-text role="index"}
======================================================
# Finite Markov Chains
.. contents:: :depth: 2
::: {.contents}
depth
: 2
:::
---
depth: 2
---
.. include:: /_static/includes/header.raw
```{note}
You can {download}`Download the source file for this page <./finite_markov-MyST.md>`
```
.. index::
single: Markov process, inventory
::: {.index}
single: Markov process, inventory
:::
We can also approximate the distribution using a `kernel density estimator
<https://en.wikipedia.org/wiki/Kernel_density_estimation>`__.
We can also approximate the distribution using a [kernel density
estimator
\<https://en.wikipedia.org/wiki/Kernel\_density\_estimation\>]{.title-ref}\_\_.
We can also approximate the distribution using a
[kernel density estimator](https://en.wikipedia.org/wiki/Kernel_density_estimation/)
Note the broken link above.
HOWEVER
We will use a kernel density estimator from `scikit-learn <https://scikit-learn.org/stable/>`__
We will use a kernel density estimator from
[scikit-learn](https://scikit-learn.org/stable/)
We will use a kernel density estimator from
[scikit-learn](https://scikit-learn.org/stable/)
Note:
- Don't fully understand what
:index:
means in the lectures...
- rST headings:
******************
Inventory Dynamics
******************
=========
----------
Documentation states that **********************
or ########
can also be used.