This project showcases the deployment of the RT-DETR model using ONNXRUNTIME in C++ and Python.
- OpenCV: 4.x
- ONNXRuntime: Tested on 1.14
- OS: Tested on Ubuntu 18.04
- CUDA: 11+ [Optional]
$ conda create -n rtdetr python=3.8 -y
$ conda activate rtdetr
$ python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
# Clone PaddleDetection repository
$ git clone https://github.com/PaddlePaddle/PaddleDetection.git
$ cd PaddleDetection
$ git checkout develop
# Compile and install paddledet
$ pip install -r requirements.txt
$ python setup.py install
# Validation
$ python tools/infer.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams --infer_img=bus.jpg
- Modify the configuration file [PaddleDetection/configs/rtdetr/base/rtdetr_r50vd.yml]:
- Modify the processing code according to the illustration [PaddleDetection/ppdet/modeling/architectures/detr.py]:
# Download the pretrained weight
$ wget https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams && mkdir weights && mv rtdetr_r50vd_6x_coco.pdparams ./weights
$ python tools/export_model.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \
-o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams trt=True \
--output_dir=output_inference
$ pip install onnx==1.13.0
$ pip install paddle2onnx==1.0.5
$ paddle2onnx --model_dir=./output_inference/rtdetr_r50vd_6x_coco/ \
--model_filename model.pdmodel \
--params_filename model.pdiparams \
--opset_version 16 \
--save_file ./output_inference/rtdetr_r50vd_6x_coco/rtdetr_r50vd_6x_coco.onnx
$ pip3 install -U pip && pip3 install onnxsim
$ onnxsim input_onnx_model output_onnx_model
# Check the converted model [Option]
$ pip install netron
$ git clone https://github.com/CVHub520/rtdetr-onnxruntime-deploy.git
$ cd rtdetr-onnxruntime-deploy
$ mkdir weights && cd weights
$ wget https://github.com/CVHub520/rtdetr-onnxruntime-deploy/releases/download/v1.0.0/rtdetr_r50vd_6x_coco_cvhub.onnx
$ cd ../python
$ python3 main.py
$ cd rtdetr-onnxruntime-deploy
$ mkdir weights && cd weights
$ wget https://github.com/CVHub520/rtdetr-onnxruntime-deploy/releases/download/v1.0.0/rtdetr_r50vd_6x_coco_cvhub.onnx
$ cd ../cplusplus
NOTE: To build the project, ensure that onnxruntime and opencv are correctly installed. Then, run the commands as instructed. Donβt forget to update the ONNXRUNTIME_DIR and OpenCV_DIR cmake options in the CMakeLists.txt file to match your custom environment.
$ mkdir build && cd build
$ cmake ..
$ make
$ ./main
# ./main --use_cuda
Python | C++ |
---|---|
Please feel free to use this project as a starting point for your own deployment needs, or as a reference for learning purposes. If you have any questions or suggestions, please don't hesitate to raise an issue or submit a pull request.
Platform | Account |
---|---|
Wechat π¬ | cv_huber |
Zhihu π§ | CVHub |
CSDN π | CVHub |
Github π± | CVHub |