/MultiPL-E

A multi-programming language benchmark for evaluating the performance of large language model of code.

Primary LanguagePythonOtherNOASSERTION

Multi-Programming Language Evaluation of Large Language Models of Code (MultiPL-E)

MultiPL-E is a system for translating unit test-driven neural code generation benchmarks to new languages. We have used MultiPL-E to translate two popular Python benchmarks (HumanEval and MBPP) to 18 other programming languages.

For more information:

Versions

  • Version 0.5.0: Instruction-following support and new languages

    • New languages: Luau, Elixir, Lean, Coq, Dafny
    • Support for instruction-following prompts
    • vLLM support for faster evaluation
  • Version 0.4.0: QoL improvements and new languages

    • New languages: OCaml, MATLAB
    • Using .jsonl instead of .json for prompts
    • Several bugfixes to prompts
  • Version 0.3.0: used to evaluate StarCoder

    • This version corrects several bugs in prompts and test cases that resulted in lower pass@k rates for some of the statically typed languages. The most significant difference is that the pass@k for Java increases by about 2% on HumanEval.
  • Version 0.2.0: used to evaluate SantaCoder