What Makes Instance Discrimination Good for Transfer Learning?
Nanxuan Zhao* Zhirong Wu* Rynson W.H. Lau Stephen Lin
Pretraining | Pytorch Augmentation | Download |
---|---|---|
Unsupervised | + RandomHorizontalFlip(0.5) | model |
+ RandomResizedCrop(224) | model | |
+ ColorJitter(0.4, 0.4, 0.4, 0.1) | model | |
+ RandomGrayscale(p=0.2) | model | |
+ GaussianBlur(0.1, 0.2) | model | |
supervised | + RandomHorizontalFlip(0.5) | model |
+ RandomResizedCrop(224) | model | |
+ ColorJitter(0.4, 0.4, 0.4, 0.1) | model | |
+ RandomGrayscale(p=0.2) | model | |
+ GaussianBlur(0.1, 0.2) | model |
Pretraining | Pretraining Data | Download |
---|---|---|
Unsupervised | ImageNet | model |
ImageNet-10% | model | |
ImageNet-100 | model | |
Places | model | |
CelebA | model | |
COCO | model | |
Synthia | model | |
Supervised | ImageNet | model |
ImageNet-10% | model | |
ImageNet-100 | model | |
Places | model | |
CelebA | model | |
COCO | model | |
Synthia | model |
Model | Download |
---|---|
Exemplar v1 | model |
Exemplar v2 | model |
If you use this work in your research, please cite:
@inproceedings{ZhaoICLR2021,
author = {Nanxuan Zhao and Zhirong Wu and Rynson W.H. Lau and Stephen Lin},
title = {What Makes Instance Discrimination Good for Transfer Learning?},
booktitle = {ICLR},
year = {2021}
}