Computer-Audio---Radix-2-Cooley-Tukey-FFT

public class FFT {

// compute the FFT of x[], assuming its length is a power of 2
public static Complex[] fft(Complex[] x) {
    int n = x.length;

    // base case
    if (n == 1) return new Complex[] { x[0] };

    // radix 2 Cooley-Tukey FFT
    if ((n&(n-1))!=0) {
        throw new IllegalArgumentException("n is not a power of 2");
    }

    // fft of even terms
    Complex[] even = new Complex[n/2];
    for (int k = 0; k < n/2; k++) {
        even[k] = x[2*k];
    }
    Complex[] q = fft(even);

    // fft of odd terms
    Complex[] odd  = even;  // reuse the array
    for (int k = 0; k < n/2; k++) {
        odd[k] = x[2*k + 1];
    }
    Complex[] r = fft(odd);

    // combine
    Complex[] y = new Complex[n];
    for (int k = 0; k < n/2; k++) {
        double kth = -2 * k * Math.PI / n;
        Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
        y[k]       = q[k].plus(wk.times(r[k]));
        y[k + n/2] = q[k].minus(wk.times(r[k]));
    }
    return y;
}


public static void show(Complex[] input, String title) {
	System.out.println(title);
	System.out.println("-------------------");
    for (int i = 0; i < input.length; i++) {
    	System.out.println(input[i]);
    }
    System.out.println();
}


public static void main(String[] args) { 
	
	
    int number_of_Bins = 65536;        
    Complex[] input = new Complex[number_of_Bins];
    int wave_Frequency = 16384;
    int wave_Period=3;
    int wave_Amplitude=3;

    // original data
    for (int i = 0; i < number_of_Bins; i++) {
    	
        input[i] = new Complex(0, wave_Amplitude*(Math.sin(2*Math.PI*wave_Frequency*wave_Period*i/number_of_Bins)));
        
    }
    

    // FFT of original data
    try
    {
    Complex[] output = fft(input);
    double magnitude_temp=0;
    double maximum_Magnitude=0;
    
    for(int i=0;i<output.length;i++)
    {
    	magnitude_temp=Math.sqrt(((output[i].re())*(output[i].re()))+((output[i].im())*(output[i].im())));
    	if(magnitude_temp>maximum_Magnitude)
    	{
    		maximum_Magnitude = magnitude_temp;  
    		
    	}
    }
    System.out.println("Maximum Magnitude(Peak Frequency) of output is "+Math.ceil(maximum_Magnitude)/6);
    
    }
    catch(IllegalArgumentException exception)
    {
    	System.out.println("Error: "+exception.getMessage());
    }
    
    

}



# Supporting Class to execute complex numbers operations



import java.util.Objects;

public class Complex {

private final double re;   // the real part
private final double im;   // the imaginary part

// create a new object with the given real and imaginary parts
public Complex(double real, double imag) {
    re = real;
    im = imag;
}

// return a string representation of the invoking Complex object
public String toString() {
    if (im == 0) return re + "";
    if (re == 0) return im + "i";
    if (im <  0) return re + " - " + (-im) + "i";
    return re + " + " + im + "i";
}

// return abs/modulus/magnitude
public double abs() {
    return Math.hypot(re, im);
}

// return angle/phase/argument, normalized to be between -pi and pi
public double phase() {
    return Math.atan2(im, re);
}

// return a new Complex object whose value is (this + b)
public Complex plus(Complex b) {
    Complex a = this;             // invoking object
    double real = a.re + b.re;
    double imag = a.im + b.im;
    return new Complex(real, imag);
}

// return a new Complex object whose value is (this - b)
public Complex minus(Complex b) {
    Complex a = this;
    double real = a.re - b.re;
    double imag = a.im - b.im;
    return new Complex(real, imag);
}

// return a new Complex object whose value is (this * b)
public Complex times(Complex b) {
    Complex a = this;
    double real = a.re * b.re - a.im * b.im;
    double imag = a.re * b.im + a.im * b.re;
    return new Complex(real, imag);
}

// return a new object whose value is (this * alpha)
public Complex scale(double alpha) {
    return new Complex(alpha * re, alpha * im);
}

// return a new Complex object whose value is the conjugate of this
public Complex conjugate() {
    return new Complex(re, -im);
}

// return a new Complex object whose value is the reciprocal of this
public Complex reciprocal() {
    double scale = re*re + im*im;
    return new Complex(re / scale, -im / scale);
}

// return the real or imaginary part
public double re() { return re; }
public double im() { return im; }

// return a / b
public Complex divides(Complex b) {
    Complex a = this;
    return a.times(b.reciprocal());
}

// return a new Complex object whose value is the complex exponential of this
public Complex exp() {
    return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
}

// return a new Complex object whose value is the complex sine of this
public Complex sin() {
    return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
}

// return a new Complex object whose value is the complex cosine of this
public Complex cos() {
    return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
}

// return a new Complex object whose value is the complex tangent of this
public Complex tan() {
    return sin().divides(cos());
}



// a static version of plus
public static Complex plus(Complex a, Complex b) {
    double real = a.re + b.re;
    double imag = a.im + b.im;
    Complex sum = new Complex(real, imag);
    return sum;
}


public boolean equals(Object x) {
    if (x == null) return false;
    if (this.getClass() != x.getClass()) return false;
    Complex that = (Complex) x;
    return (this.re == that.re) && (this.im == that.im);
}


public int hashCode() {
    return Objects.hash(re, im);
}

}

}