/dag-factory

Dynamically generate Apache Airflow DAGs from YAML configuration files

Primary LanguagePythonMIT LicenseMIT

dag-factory

Github Actions Coverage PyPi Code Style Downloads

dag-factory is a library for dynamically generating Apache Airflow DAGs from YAML configuration files.

Installation

To install dag-factory run pip install dag-factory. It requires Python 3.6.0+ and Apache Airflow 1.9+.

Usage

After installing dag-factory in your Airflow environment, there are two steps to creating DAGs. First, we need to create a YAML configuration file. For example:

example_dag1:
  default_args:
    owner: 'example_owner'
    start_date: 2018-01-01
  schedule_interval: '0 3 * * *'
  description: 'this is an example dag!'
  tasks:
    task_1:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 1'
    task_2:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 2'
      dependencies: [task_1]
    task_3:
      operator: airflow.operators.bash_operator.BashOperator
      bash_command: 'echo 3'
      dependencies: [task_1]

Then in the DAGs folder in your Airflow environment you need to create a python file like this:

from airflow import DAG
import dagfactory

dag_factory = dagfactory.DagFactory("/path/to/dags/config_file.yml")

dag_factory.generate_dags(globals())

And this DAG will be generated and ready to run in Airflow!

screenshot

Benefits

  • Construct DAGs without knowing Python
  • Construct DAGs without learning Airflow primitives
  • Avoid duplicative code
  • Everyone loves YAML! ;)

Contributing

Contributions are welcome! Just submit a Pull Request or Github Issue.